
Truffle
Virtual Machines and Execution Environments, WS2014/15

Jan Graichen, Fabio Niephaus, Matthias Springer, Malte Swart

Hasso Plattner Institute, Software Architecture Group

December 4, 2014



Truffle

Handout only: Credits

This paper is based on the paper
One VM to Rule Them All [2] by Würthinger et al.

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 1E / 31



Truffle

Overview

How to Implement a Programming Language?

How It Works

Optimizations

Applications

Summary

References

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 2 / 31



TruffleIHow to Implement a Programming Language?

How to Implement a Programming Language?

1. Prototype: build an abstract syntax tree (AST) interpreter
− Easy to implement
− But slow (tree traversal, virtual method calls)

2. Make it fast
− Build a VM
− Compile AST to byte code
− JIT compilation

→ Hard to implement, reinvent the wheel (memory management etc.)

Truffle – “How it should be”:
Build a parser, define an AST and add language specific optimizations to
make it fast.

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 3 / 31



TruffleIHow It Works

Overview

How to Implement a Programming Language?

How It Works

Optimizations

Applications

Summary

References

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 4 / 31



TruffleIHow It Works

Infrastructure [2]

Guest Language Application

OS

AOT Optimization: using Graal for static analysis and AOT compilation

Language Parser AST InterpreterGuest Language Implementation

Truffle API Framework for Node Rewriting

Truffle Optimizer Partial Evaluation using Graal

VM Runtime Services Garbage Collector Graal Compiler
Stack Walking Deoptimization

Hosted on any Java VM

Hosted on Graal VM

(slow, for guest language 
development and debugging only)

(fast, for integration of guest language 
code with existing Java applications)

Figure: Interaction Graal/Truffle

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 5 / 31



TruffleIHow It Works

Handout only: Infrastructure

• Main components
− Truffle: provides guest language implementation API, support for

optimization through node rewriting
− Graal VM: HotSpot VM with Java API (instructured by Truffle)

• Two levels of optimization: Truffle, modified Graal VM

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 5E / 31



TruffleIHow It Works

Truffle: How It Works

• Truffle: AST interpreter framework
• Framework to easily implement specialized nodes
• Based on AST node rewriting

Sample Code (running example)

function showSumMilliseconds(a, b) {
return (a + b) + " ms";

}

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 6 / 31



TruffleIHow It Works

Code Example #1
public Object add (...) {

Object left = leftNode.executeGeneric (...);
Object right = rightNode.executeGeneric (...);

if (left instanceof Long && right instanceof Long) {
try {

return ExactMath.addExact ((Long) left , (Long) right);
} catch (ArithmeticException ex) { }

}

if (left instanceof Long)
left = ((Long) left).doubleValue ();

if (right instanceof Long)
right = ((Long) right).doubleValue ();

if (left instanceof Double && right instanceof Double)
return (Double) left + (Double) right;

if (left instanceof String || right instanceof String)
return left.toString () + right.toString ();

throw new UnsupportedSpecializationException (...);
}

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 7 / 31



TruffleIHow It Works

Node Rewriting [2]

U

U U

U

U I

I I

G

G I

I I

G

G

Node Rewriting 
for Profiling Feedback

AST Interpreter
Rewritten Nodes

AST Interpreter
Uninitialized Nodes

Compilation using
Partial Evaluation

Compiled Code

Node Transitions

S

U

I

D

G

Uninitialized Integer

Generic

DoubleString

S S

Sample Code

function showSumMilliseconds(a, b) {
return (a + b) + " ms";

}
showSumMilliseconds (1, 2);

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 8 / 31



TruffleIHow It Works

Handout only: Node Rewriting

• Generic nodes can handle all types.
• Guards check if the type specialization is still accurate.
• Partial evaluation once a tree stablized (no rewrites for a while) and is

hot.
− Inlines execute() methods generates native code.
− Adds a check and a deoptimization call where a rewrite could happen.
− Requires Graal (accessing compiler with Java code).

• Truffle without Graal: interpreter mode

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 8E / 31



TruffleIHow It Works

Deoptimization [2]

I

I I

G

G I

I I

G

G

Deoptimization
to AST Interpreter

D

I D

G

G D

I D

G

G

Node Rewriting to Update 
Profiling Feedback

Recompilation using
Partial Evaluation

GS GS GSGS

Figure: Deoptimization of Native Code

Sample Code

function showSumMilliseconds(a, b) {
return (a + b) + " ms";

}
showSumMilliseconds (1, 2.5);

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 9 / 31



TruffleIHow It Works

Handout only: Deoptimization

• Switch from compiled mode to interpreted mode if safety guard fails
• Reconstruction of program state in interpreter
• Node rewriting (see previous slides)

− Switch from specialized node to generic node
− In this example: switch from integer node to double node directly,

because double nodes can also handle the integer case

• Partial evaluation (see previous slides)

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 9E / 31



TruffleIHow It Works

Code Example #2 (using Annotation-Based DSL)

public abstract class SLAddNode extends SLBinaryNode {
@Specialization(rewriteOn=ArithmeticException.class)
protected final long add(long left , long right) {

return ExactMath.addExact(left , right);
}

@Specialization
protected final double add(double left , double right) {

return left + right;
}

@Specialization(guards = "isString")
protected final String add(Object left , Object right) {

return left.toString () + right.toString ();
}

protected final boolean isString(Object a, Object b) {
return a instanceof String || b instanceof String;

}
}

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 10 / 31



TruffleIHow It Works

Classes Generated by DSL Preprocessor
-parent : Node
-children : Node[]

+replace(newNode : Node)
+accept(visitor : NodeVisitor)

Node

SLBinaryNode

+add(left : long, right : long) : long
+add(left : double, right : double) : double
+add(left : Object, right : Object) : String

SLAddNode

-leftNode : SLExpressionNode
-rightNode : SLExpressionNode

+executeChained()

SLBaseAddNode

+executeGeneric()
+executeChained()

SLAddUninitializedNode

+executeLong()
+executeChained()

SLAddLongNode

+executeDouble()
+executeChained()

SLAddDoubleNode

+executeString()
+executeChained()

SLAddStringObjectObjectNode

+executeGeneric()
+executeLong()
+execute...()

SLExpressionNode

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 11 / 31



TruffleIHow It Works

Handout only: Code example

• Defined by language implementor:
SLExpressionNode, SLBinaryNode, SLAddNode

• Generic case is generated by preprocessor
• Uninitialized node: replaces itself with specialized node
• Monomorphic node: one specialization only
• Megamorphic node: node can handle all types
(last item on linked list)

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 11E / 31



TruffleIOptimizations

Overview

How to Implement a Programming Language?

How It Works

Optimizations
Type Decision Chains
AST Inlining
Assumptions
Local Variables

Applications

Summary

References
Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 12 / 31



TruffleIOptimizationsIType Decision Chains

Type Decision Chains [3]

Uninitialized Type=#1

Uninitialized

Type=#1

Uninitialized

Type=#2 Type=#2

Uninitialized

Type=#3

Type=#1 Generic

Figure: Type Decision Chains as Truffle’s implementation of Polymorphic Inline
Caches

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 13 / 31



TruffleIOptimizationsIType Decision Chains

Classes Generated by DSL Preprocessor
-parent : Node
-children : Node[]

+replace(newNode : Node)
+accept(visitor : NodeVisitor)

Node

SLBinaryNode

+add(left : long, right : long) : long
+add(left : double, right : double) : double
+add(left : Object, right : Object) : String

SLAddNode

-leftNode : SLExpressionNode
-rightNode : SLExpressionNode
-next : SLAddBaseNode

+executeChained()

SLBaseAddNode

+executeGeneric()
+executeChained()

SLAddUninitializedNode

+executeLong()
+executeChained()

SLAddLongNode

+executeDouble()
+executeChained()

SLAddDoubleNode

+executeString()
+executeChained()

SLAddStringObjectObjectNode

+executeGeneric()
+executeChained()

SLAddPolymorphicNode

+executeGeneric()
+executeLong()
+execute...()

SLExpressionNode

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 14 / 31



TruffleIOptimizationsIType Decision Chains

Handout only: Type Decision Chains

• Polymorphic node: node can handle a limited set of types (linked list
via next field): polymorphic inline caching

• Last element in linked list is megamorphic

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 14E / 31



TruffleIOptimizationsIAST Inlining

AST Inlining [3]

function foo() {
return add(1, 2) + add("hello", "world");

}

function add(a, b) {
return a + b;

}

Figure 10. Extended JavaScript example.

helper methods. That is, applying recommended software engineer-
ing practices can decrease the performance of the program.

In comparison to dynamic languages, the static typing of Java
somewhat mitigates the need for run-time type feedback in terms of
achieving good performance. However, use of type profiling is still
a major issue for non-primitive types in Java as the information
about polymorphic call sites gets less specific and branch proba-
bility accuracy decreases as more inlining is applied by the opti-
mizing compiler. Some abstractions used in Java libraries can have
their performance severely impacted by this issue. For example, a
foreach method on a Java collection object that takes a closure as
its parameter has a megamorphic call site at the point where the clo-
sure is called. This megamorphic call site contains the type of every
closure ever given to the foreach method. Inlining the foreach
method into its call site greatly increases the chance that the closure
call becomes less polymorphic and may even be monomorphic.

We believe that the core of the problem is the gap between the
inlining performed by the optimizing compiler and the way the
interpreter executes the program. Therefore, we propose to perform
function inlining on the AST level. If we find out that a particular
call site (not a method) is hot, we duplicate the AST of the called
method and put the copy back into the uninitialized state. This way,
the AST of that method is specialized based on its usage patterns
from the call site. This allows us to gather context-specific profiling
feedback. Figure 11 illustrates this method inlining process, where
the big circles represent methods, and the small circles represent
AST nodes.

Figure 12 shows the evolution of the AST (simplified) when ex-
ecuting the JavaScript program from Figure 10. In the first version
of the AST, the connection between the call sites and the method
add is through function calls (stage 1). The main difference be-
tween this connection and a normal connection between two AST
nodes is that the former does not have a parent pointer and also that
there may be multiple parents for a function node (in this example
two). The nodes that implement a specific method always form a
tree whereas the connections between trees form a graph, i.e., the
call graph. Cycles in the graph caused by recursion can be dealt
with by inlining heuristics, e.g., stop inlining once the AST reaches
a certain number of nodes.

There are two plus operations; both are currently in the unini-
tialized state. After execution of the first add function call, the plus
operation in the add function moves to the integer state (stage 2).
After the second add function call, the plus operation moves to the
generic state, because the type of the inputs does not match the pre-
dicted integer type (stage 3). The plus operation in the foo function
also moves from uninitialized to generic: we are adding an integer
and a string, therefore we cannot specialize (stage 4).

After a predefined number of executions of the add call site, we
recognize it is hot. In that case, we inline the called method into the
caller. The add operation node gets duplicated and then replaced
by the uninitialized version of that node (stage 5). During the first
execution of that node, it gets specialized to be an integer node
(stage 6).

When the second call site gets hot, we inline this call site too
(stage 7). After the first invocation, the add operation that was

Figure 11. Method inlining in the dynamic call graph.

duplicated during this inlining, is specialized to string (stage 8). We
can now execute both invocations of the add method specialized on
parameter types, which results in a performance gain.

The important thing to note here is that we can apply this pro-
gram specialization without any global analysis. Using only greedy
and simple algorithms that operate locally on a node, dynamic spe-
cialization of the program achieves faster operations.

7. Evaluation
We implemented an AST rewriting interpreter for JavaScript in
Java. Our implementation is pure Java source code that does not
need any native code, machine code generation, or Java bytecode
generation. The focus is on showing the concept and the potential
of AST rewriting rather than a complete JavaScript VM. We have
not yet implemented some features of JavaScript, such as eval()
or regular expressions (see Section 8), but otherwise we adhere to
the semantics of JavaScript. We use the V8 benchmark suite [12]
for evaluation. Two benchmarks are excluded: RegExp (a regular
expression benchmark) and EarleyBoyer do not yet run on our
implementation.

7.1 Performance
To show the performance of our AST interpreter and the impact of
AST rewriting, we compare the following configurations:

• AST interpreter with tree rewriting: Our AST interpreter with
all optimizations described in the previous sections enabled.

• AST interpreter without tree rewriting: Our AST interpreter
with tree rewriting disabled completely, i.e., the AST is never
changed during execution. Still, the AST interpreter is imple-
mented carefully to achieve the best possible performance, and
it uses the same the structures to represent JavaScript objects
and arrays.

• AST interpreter rewriting only property access: Our AST inter-
preter with tree rewriting only enabled for type decision chains
(see Section 4.2).

• Rhino with Java bytecode generation: The Rhino JavaScript
VM [18] version 1.7R2 with bytecode generation enabled. Sim-
ilar to our system, Rhino is a JavaScript VM written in Java. It
uses an AST interpreter as the first level of execution, and then
translates frequently executed JavaScript methods to Java byte-
codes. These bytecodes are then translated to optimized native
code by the JIT compiler of the Java VM.

• Rhino interpreter only The Rhino JavaScript VM with bytecode
generation disabled, i.e., using their AST interpreter only.

We run all configurations on the 64-bit Java HotSpot server VM
of the JDK 7 update 2. The JIT compiler of the VM translates
the AST interpreter methods to optimized machine code. Thereby,

78

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 15 / 31



TruffleIOptimizationsIAST Inlining

Slightly More Complex Example

Sample Code

function foo() {
return add(1, 2) + add("hello", "world");

}

function add(a, b) {
return a + b;

}

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 16 / 31



TruffleIOptimizationsIAST Inlining

AST Inlining [3]

U+

U+

Call Call

add

foo

I+

U+

Call Call

add

foo

G+

U+

Call Call

add

foo

G+

G+

Call Call

add

foo

G+

G+

Inline Call

add

foo

U+

G+

G+

Inline Call

add

foo

I+

G+

Inline

foo

I+

Inline

U+

G+

Inline

foo

I+

Inline

S+

1 2 3 4

5 6 7 8

Legend:

U+

I+

S+

G+

uninitialized add

integer add

string add

generic add

Figure 12. AST evolution for the extended JavaScript add example from Figure 10.

it performs aggressive optimizations such as global code motion
and scheduling, graph-coloring register allocation, array-bounds-
check elimination, loop invariant code motion, loop unrolling, and
escape analysis. Additionally, it uses profiling information to, e.g.,
inline the most frequently called method of a polymorphic call site.
This helps to optimize a few call sites of the execute() AST
interpreter method, but still a lot of virtual method calls remain.
When the Rhino VM generates Java bytecodes, these bytecodes
are optimized the same way by the Java HotSpot VM. However,
complicated bytecode sequences have to be emitted to simulate
JavaScript semantics with typed Java bytecodes, leading to sub-
optimal machine code being generated.

The benchmarks were executed on a two socket, dual core AMD
Opteron 2214 with 2.2 GHz, a total number of 4 cores, and 4 GB
main memory. The OS is Oracle Enterprise Linux, version 2.6.18.
The reported numbers are the average of 10 executions.

Figure 13 shows the performance results. The numbers are
speedups relative to our AST interpreter with all optimizations en-
abled, i.e., higher means better. Tree rewriting is an important opti-
mization that greatly improves performance of the interpreter. For
example, it leads to an 11x speedup for the DeltaBlue benchmark.
The most important rewriting is the optimization of property and
array accesses using type decision chains. This optimization spec-
ulates that types are stable, i.e., that objects of the same shape are
used when performing a property lookup repeatedly even when the
language itself is dynamically typed. This is a well-known obser-
vation that was already used to optimize languages such as Self [6].
In our tree rewriting interpreter, this optimization fits naturally into
the general rewriting framework.

Rhino in its interpreter-only mode is in general much slower
than our non-rewriting interpreter. This shows that our careful im-
plementation style of the interpreter, combined with a good object
model to represent JavaScript objects, can make a difference and
lead to a nearly 2x speedup. With all of our implementations en-
abled, our interpreter is nearly 4x faster than the Rhino interpreter.
This speed comes close to the speed of Rhino when generating Java
bytecodes, making the fully optimized configuration of Rhino only
40% faster than our interpreter.

Interpreters are much slower than the code generated by op-
timizing JIT compilers. To show the performance possibilities
for JavaScript, we compare our interpreter to the V8 JavaScript
VM [11], one of the best performing JavaScript VMs with a JIT
compiler developed and optimized solely for JavaScript. In com-
parison to our AST interpreter with tree rewriting, the V8 VM is
6x (benchmark Splay) to 62x (benchmark Richards) faster, with a
mean of 28x. The future work in Section 8 shows how our rewritten
AST can be the input for an optimizing compiler.

The results show that a carefully implemented AST interpreter
with AST rewriting comes close in performance to much more
complicated systems generating Java bytecodes, which are com-
piled to optimized native code by the Java VM. Performing high-
level and dynamic language specific optimizations on the AST has
more impact than the low-level optimizations that the Java VM can
perform on Java bytecodes. The most important tree rewriting op-
timization, type decision chains, is difficult to implement in Rhino
with bytecode generation because bytecodes cannot be rewritten
once they are generated, i.e., it is not possible to speculate on type
stability. Therefore, Rhino’s bytecode generation would not profit
from, e.g., our choice of object representation. In summary, gener-
ating Java bytecodes makes the implementation much more com-
plex, but does not lead to a significant performance benefit.

7.2 Rewriting
Figure 14 shows how many nodes of certain kinds of operations
are rewritten. We report the number of nodes that are rewritten
at least once (columns ‘>0’), as well as the number of nodes
that are rewritten more than once(columns ‘>1’). This shows that
most nodes are rewritten only once, but then remain stable and
unchanged for the rest of the execution. This implies that the types
are stable, i.e., an arithmetic node that is rewritten once to type
Integer often remains at this type. The first two rows are arithmetic
operations and comparisons, while the following three rows are
variable assignments and loads. Loads from global variables are
accesses from the JavaScript global object, which we rewrite to
special nodes so that we can optimize them more than normal
property accesses. The rows for property access and array access

79

Figure: AST Evolution

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 17 / 31



TruffleIOptimizationsIAST Inlining

Handout only: AST Inlining

• Duplicate parts of the AST.
• Every duplicate subtree can have its own specialization.

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 17E / 31



TruffleIOptimizationsIAssumptions

Assumptions

Requirement

Global assumptions about system state, like:
• Redefinition of system objects or methods (JavaScript, Ruby)
• Current class hierarchy (Java)

• Global one-time switch; bool can be changed to false once
• Partial evaluation with constant value instead of check
• On state change code is deoptimized

No runtime overhead in compiled code

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 18 / 31



TruffleIOptimizationsIAssumptions

Code Example #3: Assumption for Method Redefinition

final class MyCallNode {
private final MyFunction function;
private final Assumption functionStable;

protected SLDirectDispatchNode (... MyFunction function) {
this.function = function;
this.functionStable = function.getStableAssumption ();

}

protected Object execute (...) {
try {

functionStable.check ();
return function.call (...);

} catch(InvalidAssumptionException ex) {
replace (...);

}
}

}

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 19 / 31



TruffleIOptimizationsI Local Variables

Local Variables

Requirement

Highly efficient access to local variables while simple modeling
• Modeled as an array on Frame object
• Access nodes must be specializable for dynamic profiling

• Escape analysis of local variable array access
• Implicit single static assignment (SSA) form
• Host compiler can optimize without flow analysis
• Frame array never allocated except on deoptimization

As fast as host language variables; optional Frame facilities

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 20 / 31



TruffleIOptimizationsI Local Variables

Single Static Assignment (SSA) Form

Original Sample Code

if (condition) {
x = value1 + value2;

} else {
x = value2;

}
return x * 2;

Sample Code in SSA Form

if (condition) {
x1 = value1 + value2;

} else {
x2 = value2;

}
x3 = phi(x1, x2);
x4 = x3 * 2;
return x4;

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 21 / 31



TruffleIOptimizationsI Local Variables

Handout only: Single Static Assignment (SSA) Form

• Every variable is only written once.
• phi nodes capture variables from different branches.
• Replaces read access with address from last write.
• All variables are implicitly final/constant.
• Makes it easier to do certain optimizations (e.g. dead code
elimination, common subexpression elimination, . . . ).

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 21E / 31



TruffleIApplications

Overview

How to Implement a Programming Language?

How It Works

Optimizations

Applications

Summary

References

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 22 / 31



TruffleIApplications

Languages

JavaScript

• Specialization of JavaScript generic types
• Object prototype chain changing by "shape" (assumptions)

Ruby

• Mostly method invocation → in-lining and shaping
• Method redefinitions via assumptions

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 23 / 31



TruffleIApplications

Debugging (1/3)

Problem
Normal debugging:

• Different behavior when debugging: Disabled or different
optimizations, different runtime behavior

• (Extremely) slower execution – may not practical to run production
applications

→ Use node rewriting and assumption for nearly zero overhead debugging

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 24 / 31



TruffleIApplications

Debugging (2/3) [1]

Idea
Handle break points as simple
AST nodes
Optimize using assumptions

while x < y
x += 1
y -= 1

end

1""""while"x"<"y"
2""""""x"+="1"
3""""""y"*="1"
4""""end(

1""""set_trace_func"proc"{"|event,"file,"line,"
2""""""""id,"binding,"classname|"
3""""""puts""We're"at"line"number"#{line}""
4""""}"

Figure 1: Example Ruby code

• Set a line breakpoint that halts execution.

• Set a line breakpoint with an associated action: a frag-
ment of Ruby code that might be guarded by a con-
ditional expression and which might halt execution or
anything else.

• Set a data breakpoint on a local variable in some method
that halts execution immediately after an assignment.

• Set a data breakpoint with an associated action, as
with a line breakpoint.

• Continue execution.

• Basic introspection of the program structure and cur-
rent state such as examining the value of variables and
reporting the halted position.

The goal for the prototype was to test whether the goals
described earlier could be achieved through techniques that
leverage Truffle’s AST node abstraction, combined with the
partial evaluation, dynamic optimization, and dynamic de-
optimization capabilities of Graal. The key strategy is to im-
plement debugging actions as dedicated AST nodes that are
inserted into the AST, and thus into the flow of program exe-
cution. To Truffle’s optimization machinery these nodes ap-
pear no different than ordinary “language-level” AST nodes.

3. DEBUG NODES
Debugging in the prototype is implemented by strategi-

cally modifying the AST under interpretation by Truffle.

3.1 Wrappers
The central construct in the Ruby Truffle debugger is the

wrapper node or simply wrapper. This is a Truffle AST node
with one child that:

• is transparent to execution semantics,

• by default just propagates the flow of program execu-
tion from parent to child and back, and

• performs debugging actions when needed.

Starting with an AST produced by a conventional parser, we
insert a wrapper as the parent of the first node corresponding
to each location where we may want to install some debug
action.

Figure 1 shows Ruby code that increments a local vari-
able x and decrements a local variable y while x < y. This
code has three locations where we might want to set a break-
point, and two locations where we might want to break on
assignment of a local variable.

Figure 2 shows the AST of this code as produced by the
parser. Figure 3 shows the same AST with wrappers inserted
wherever the Ruby parser tells us that the line number has
changed, to implement line breakpoints. Each wraps a single
child node.

WriteLocal ‘x’ 

Call ‘+’ 

ReadLocal ‘x’ 

FixnumLiteral 1 

WriteLocal ‘y’ 

Call ‘-’ 

ReadLocal ‘y’ 

FixnumLiteral 1 

Sequence Call ‘<’ 

ReadLocal ‘x’ 

ReadLocal ‘y’ 

While 

Figure 2: AST of Figure 1 without wrappers

LineBreakpoint 

Call ‘+’ 

ReadLocal ‘x’ 

FixnumLiteral 1 

LineBreakpoint 

Call ‘-’ 

ReadLocal ‘y’ 

FixnumLiteral 1 

Sequence LineBreakpoint 

While 

Call ‘<’ 

ReadLocal ‘x’ 

ReadLocal ‘y’ 

WriteLocal ‘x’ 

WriteLocal ‘y’ 

Figure 3: AST of Figure 1 with wrappers to imple-
ment line breakpoints

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 25 / 31



TruffleIApplications

Debugging (3/3): Results [1]

MRI Rubinius JRuby Topaz JRuby+Truffle

Enabling set trace func 0.0x n/a 2.3x 0.1x 0.0x
Using set trace func 26.6x n/a 39.9x 2714.2x 4.5x
Enabling debugging 4.9x 4.6x 4.6x n/a 0.0x
Breakpoint on a line never taken 5.1x 9.3x 46.5x n/a 0.0x
Breakpoint with constant condition 30.6x 425.1x 44.6x n/a 4.9x
Breakpoint with simple condition 41.2x 423.7x 95.8x n/a 9.0x

Table 5: Summary of overheads (lower is better)

 1

 10

 100

 1000

 10000

Enabling set_trace_func

Using set_trace_func

Enabling debugger

Breakpoint

Constant conditional

Simple conditional

Se
lf 

R
el

at
iv

e 
Ti

m
e 

(s
/s

)

MRI
Rubinius

JRuby
Topaz

JRuby+Truffle
n/

a

ʜ�
�

n/
a

n/
a

ʜ�
�

n/
a

ʜ�
�

n/
a

n/
a

Figure 10: Summary of relative performance when using debug functionality (taller is exponentially worse)Figure: Relative debugging performance in different Ruby VM implementations

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 26 / 31



TruffleI Summary

Overview

How to Implement a Programming Language?

How It Works

Optimizations

Applications

Summary

References

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 27 / 31



TruffleI Summary

Summary

• Truffle is an AST interpreter framework
• Truffle lets developers concentrate on their domain, not having to
implement generic optimizations again and again

• Truffle’s powerful node rewriting technique supports most kinds of
domain specific specialization

• Truffle therefore allows easy development of very fast AST interpreter

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 28 / 31



TruffleI Summary

Future Work

We want to dive deeper and look at interesting stuff in:
• Interaction with Graal VM
• Partial Evaluation
• Deoptimization
• DSL Preprocessor
• Type System
• JRuby

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 29 / 31



TruffleIReferences

Overview

How to Implement a Programming Language?

How It Works

Optimizations

Applications

Summary

References

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 30 / 31



TruffleIReferences

References

1. C. Seaton, M. L. Van De Vanter, and M. Haupt. Debugging at full
speed. In Proceedings of the 8th Workshop on Dynamic Languages
and Applications (DYLA), 2014.

2. T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq, C.
Humer, G. Richards, D. Simon, M. Wolczko. One VM to Rule Them
All, 2013.

3. T. Würthinger, A. Woß, L. Stadler, G. Duboscq, D. Simon, C.
Wimmer. Self-Optimizing AST Interpreters, 2012.

Hasso Plattner Institute, Software Architecture Group Truffle December 4, 2014 31 / 31


	How to Implement a Programming Language?
	How It Works
	Optimizations
	Type Decision Chains
	AST Inlining
	Assumptions
	Local Variables

	Applications
	Summary
	References

