
 

 

picoUML: Processing class diagrams on small devices 
 

Kai Fabian, Lukas Rögner, Matthias Springer, Claus Steuer 

Hasso Plattner Institute 
Potsdam, Germany 

{kai.fabian, lukas.roegner, matthias.springer, claus.steuer}@student.hp.i.uni-potsdam.de 

 

ABSTRACT 
We propose a design for editing UML class diagrams on 
small, touch-enabled devices. As an extension to the UML 
standard we suggest grouping logically related classes into 
categories.  
Our design consists of two functionally equivalent views. 
The list representation is a faster way of navigating to clas-
ses and associations. In addition, the typical, graphical view 
allows users to get an overview of the diagram and to lay-
out classes and associations. 

INTRODUCTION 

 
Figure 1: Using picoUML, users can edit existing UML 
class diagrams or create new diagrams from scratch. 

UML class diagrams are used for modeling and document-
ing a system's structure, such as software systems or do-
main-specific languages.  
Modeling UML class diagrams typically requires large 
screens. When we asked Stefan Hildebrandt – researcher in 
domain-specific languages – about his preferred hardware, 
he told us that he rather "wants to have a second screen". 
That is why there are many different UML modeling tools 
available for computers but not for mobile devices.  
In this paper we present the UML class editor picoUML, 
which allows users to create new and modify existing class 
diagrams.  

 
Figure 2: (a) Stefan Hildebrandt creating a domain-
specific language for finite automata as a class diagram, 
(b) Dominik Moritz talking about the use of UML. 

DEVICE 

 
Figure 3: Top (a) and front (b) view of the device. 
The target device of the application is a modified version of 
the iPod nano.  
The Ying-Yang button allows the user to switch between 
the graphical view and the list view.  
By pressing the back button, the user can leave the current 
dialog at any time. If necessary, he is asked whether he 
wants to save changes.  

WALKTHROUGH 
A UML designer wants to edit an existing UML diagram 
for a bank system. He wants to change the association from 
Customer – BankCounter to Customer → OnlineBanking 
and make it a navigable association on the OnlineBanking 
side.  



 

 

 
Figure 4: (a) The user chooses between graphical view 
and list view. (b) By clicking the Ying-Yang hardware 
button he can change between both views. 
Both views provide an equivalent way of navigating the 
diagram. Figure 5 shows the user navigating to the associa-
tion Customer–BankCounter – by using the graphical view 
(a) and by using the list view (b).  

 
Figure 5: (1) The user selects the category Customer, 
where the class Customer is located. (2) Secondly he se-
lects that class. (3) Now he sees an overview of all asso-
ciations belonging to this class. He taps BankCounter to 
edit the Association Customer – BankCounter. (3a) In 
the graphical view, he selects an association by tapping 
an association endpoint at the border. 

 
Figure 6: (1) The association details view shows type, 
targets and multiplicities of the association. By per-
forming a flick gesture on BankCounter the user chang-
es the target to OnlineBanking. (2) The user taps the 
association line button to change details of the associa-
tion. 
 

 
Figure 7: (1) The user doesn’t want to change the mul-
tiplicities and he flicks left to get to the type changing 
interface. (2) By tapping the lower right button multiple 
times, the user changes the type of the association to 
Navigable. (3) The user presses the back hardware but-
ton to leave the association details view. 
 

 
Figure 8: (1) The user presses the back hardware but-
ton, again, to leave the association details view. (2) He 
confirms his changes by taping the Yes button. 
 

 
Figure 9: Depending on which view the user started 
from, he either ends up (a) in the graphical view or (b) 
in the list view of the class Customer. By pressing the 
back button a second time he could switch to the class 
diagram level (Figure 5/2). 

DESIGN 
Two functionally equivalent views 
During contextual inquiry, Stefan stated that he prefers 
using a tree-based view for editing class diagrams. He ex-
plained the increased efficiency at adding, removing and 
changing associations with the lack of navigational over-



 

 

head in a typically extensive diagram. This conclusion has 
even more impact on small screen devices, because naviga-
tion is already difficult there. 
However, Dominik countered that although he could imag-
ine working with a tree-based diagram representation, he 
still considers a graphical representation important. He ex-
plained that a good graphical structure makes a document 
more readable and understandable. His point of view was 
also backed up by Stefan’s exemplary walkthrough, when 
he started by creating and arranging classes within the 
graphical view, before continuing with refactoring using 
the tree-based diagram representation. 
This concludes our first, most essential design decision of 
providing two functionally equivalent diagram views. The 
single functional difference is the absence of graphical ar-
rangement capabilities for classes and associations within 
the list view. This led to our first design constraint: Every 
single function must be represented within both views in a 
substantially similar way. 
Putting classes into categories 
To facilitate document navigation, we introduce a method 
of structuring class diagrams which is not part of the UML 
standard: Classes should be partitioned into named, color-
ized categories. We recommend grouping the classes by 
logical or functional aspects, although the user is not bound 
to any constraints when structuring his diagram. 
The list view consists of an additional layer expressed by a 
selective list: In the beginning, the user chooses a category. 
He can then select the desired class out of a generated list 
consisting of all classes within the chosen category. When 
categorizing reasonably, the user will have to choose from 
a significantly smaller list than before. 
For the graphical view we propose a semantic zooming 
technique, which tries to resemble the local extents of the 
category’s classes. 

 
Figure 10: Instead of using a single list (1a) we propose 
an additional hierarchical level (2a, 3a). Similarly, in-
stead of providing an unlimited zoom level (1b), we 
propose a semantic zooming technique (2b), which only 
shows categories. In the graphical view (3b) the user 
navigates by performing pinching and flicking gestures. 

After brainstorming we dismissed our first idea of imple-
menting the list view as a single list of classes. Considering 
a medium-sized class diagram, such as the bank system 
diagram in the previous section, such a list would already 
consist of 15 classes. Although the list could be sorted al-
phabetically to facilitate finding a specific class, a user 
would still have to scroll for a distance of four times the 
screen height. 
The same issue arises regarding the graphical view. On 
large diagrams a user has to scroll many times to move the 
screen from one border of the diagram to the opposing bor-
der. When zooming out, a user can still realize the rough 
structure of the diagram, if he is familiar with the diagram. 
However, he can’t determine the exact position of specific 
classes, since the text becomes unreadable. 

Slide-to-descend 
In our first design, the list view did not provide any way for 
going back to a higher hierarchical level, other than the 
back hardware button. In our final design, we provide the 
user with an additional technique supporting going back, 
that we call slide-to-descend.  

 
Figure 11: Here, the user does not tap a list element to 
go deeper within the hierarchy, but slides it sidewards 
to change the hierarchical level. 
By dragging the name of the current class (BankCounter in 
Figure 11) or category to the right, the user can go back 
without pressing a hardware button. The same technique 
can be used to go deeper within the hierarchy by dragging 
an item to the left. 
To improve discoverability the user can also tap an item 
and a sliding animation clarifies the interface’s affordance. 
During user testing, about two thirds of the testers started 
using the menu in a sliding manner, after observing the 
animation. Also, the number of cases in which users trav-
ersed to a wrong element decreased – because they can now 
interrupt the sliding gesture when noticing the wrong selec-
tion. 

Providing a method to cancel changes 
During heuristic evaluation 4 out of 8 evaluators said they 
either wanted to have a method to cancel changes in associ-
ation details dialog, or alternatively a method to apply these 
changes explicitly. Our initial design didn’t provide a Can-
cel or OK button and applied changes immediately, when 
pressing the back button. 
In our improved design we provide the user with a modal 
dialog (Figure 8/2), which asks him whether he wants to 
save changes or not, after he pressed the back button. If the 



 

 

user presses the back button a second time, the dialog will 
vanish and the changes will be canceled. 

Spin buttons to change an association’s type 
In our first design the menu to change the association type 
consisted of an image of the current association and a but-
ton for each end of the association.  

 
Figure 12: Our initial design, using a modal dialog 

Each button had a label indicating the current association 
type. By pressing a button the user could open a dialog 
consisting of two pages, which could be scrolled with a 
flick gesture. Each page contained at most 4 buttons. 
During paper prototyping we noticed, that this design con-
sumed a lot of time and that there was no clear mapping 
between the dialog and the association endpoint being edit-
ed. Moreover, about one third of the testers didn’t know 
how to go back without changing the association. To 
achieve this, they would have had to select the current as-
sociation type again and therefore memorize the type and 
the selected association end before entering the menu, or 
press the back hardware button. 

 
Figure 13: Using spin buttons to change the association 
type. 

In our new design we use spin buttons. The user changes 
the type of an association by tapping the spin buttons and 
spinning through the possible types. The new type is im-
mediately shown. Since there are only six different types, 
this is a fast technique. The missing labels showing the 
name of an association type are not a problem, because 
most users refer to a specific type by its visual representa-
tion, rather than by its name. 
During heuristic evaluation all evaluators reported, that this 
technique was easy to understand and fast to use. However, 
some evaluators said, that they would like to see a preview 
of the next type before pressing the spin button. 

Sliding through endpoints in different levels 
To edit an association target, the user uses a flick gesture. 
Doing so, a new class scrolls in, then snaps and thus indi-
cates the new association endpoint. While heuristic evalua-
tion most evaluators reported, that they liked this technique, 
but that it took too long to scroll to a specific class, espe-
cially when diagrams get bigger. 
To solve this problem we developed a two-stage selection 
process, which benefits from our separation of classes into 
categories. The user starts in the first stage, where he can 
scroll through all classes of the diagram. The classes are 
sorted according to their categories, and within a category, 
sorted alphabetically. By tapping a class, the second stage 
is entered. The user scrolls through the different categories, 
starting at the category of the current class. Tapping a cate-
gory brings the user back to the first stage, now starting at 
the first class of the selected category. 

 
Figure 14: (1) By tapping the class BranchOffice, the 
user reaches the category Corparate. (2) The user scrolls 
to the category Interactions and (3) confirms it by tap-
ping. (4) Now he navigates to the class ATM. 
This way of selecting a target enables users to quickly nav-
igate through the classes in big diagrams. If the diagram is 
small or the user doesn’t know about this feature he can 
remain in the first stage, without losing the ability to access 
each class of the diagram. 

CONCLUSION 
During contextual inquiry we learned that software devel-
opers frequently have to make changes to existing UML 
diagrams.  
Therefore we put particular focus on efficiency by provid-
ing the slide-to-descent list view and the same hierarchical 
structure when sliding through association endpoints. 
We believe future applications can benefit from our design, 
especially from the hierarchical list view and our slide-to-
descent technique. 


	ABSTRACT
	INTRODUCTION
	DEVICE
	WALKTHROUGH
	DESIGN
	Two functionally equivalent views
	Putting classes into categories
	Slide-to-descend
	Providing a method to cancel changes
	Spin buttons to change an association’s type
	Sliding through endpoints in different levels

	CONCLUSION

