
Memory-Efficient
Object-Oriented

Programming on GPUs
Matthias Springer

Thesis Exam, 07/30/2019

Outline
1. Details of DynaSOAr: Allocation/Deallocation by Example
2. Comparison of DynaSOAr with other (Lock-free) GPU Allocators
3. Overhead of Ikra-Cpp / DynaSOAr Data Layout DSL
4. Integration of DynaSOAr with OpenMP/...

2

“Explain Details of the DynaSOAr
Algorithm”

3

Heap Layout

4

1. Select active[T] block for allocation.
Initialize a new active[T] block if none found.

2. Reserve object slot in selected block.
3. Update block state bitmaps (indices).

Object Allocation

1

2

3

5

Walk through
allocation with two
concurrent threads.

6

① Object Allocation by Example

7

② Object Allocation by Example

8

③ Object Allocation by Example

alloc

Atomic semantics

This block is now full!
No longer active.

Inconsistency between
block state index and

actual block state!

9

④ Object Allocation by Example

This block is now full!
No longer active.

10

⑤ Object Allocation by Example

This block is now full!
No longer active.

11

⑥ Object Allocation by Example

FAIL!

This block is now full!
No longer active.

12

⑦ Object Allocation by Example
Retry. Select
new block.

… but let’s
focus on the
other thread.

This block is now full!
No longer active.

13

⑧ Object Allocation by Example

Block is now full!

This block is now full!
No longer active.

No longer inconsistent.

14

⑨ Object Allocation by Example

Double check if block
type is still T.

Block could have been
deleted and reinitialized
to another type t != T
before Line 8.

This block is now full!
No longer active.

15

Challenges in Object Allocation
● We use block state bitmaps for finding active blocks, but those bitmaps may

be (temporarily) inconsistent.
○ Source of truth: Values stored inside block.
○ Bitmaps are only indices and they may not always be correct.
○ Solution: Use bitmaps for finding blocks quickly, then double check by looking at block.
○ Slot reservation is optimistic.

■ Assuming that block state has not changed. Otherwise, we have to rollback.

● Block selection and block reservation together are not atomic.
○ E.g.: Two threads may select the same block with only one free object slot. Only one thread

can succeed with slot reservation.
○ Assumption in Block::reserve(): Block has at least 1 free object slot and is of type T.
○ This assumption may sometimes be violated, in which case we retry.

16

Walk through
deallocation with one
thread.

17

① Block Deletion by Example

18

② Block Deletion by Example

dealloc

19

③ Block Deletion by Example

Can I delete this
block now?

20

④ Block Deletion by Example

Can I delete this
block now?

21

⑤ Block Deletion by Example

Can I delete this
block now?

NO ! 22

Challenges of Object Deallocation
● The basic problem is Safe Memory Reclamation (SMR).

○ A notoriously different problem in lock-free algorithms with lots of literature.
○ Common solutions: Epoch-based reclamation [1], hazard pointers [2].

● DynaSOAr’s approach: Block invalidation
○ Set all object slots to “1”, so that the block appears to be completely full to other threads.
○ Remove block from the active[T] index, so that other threads will no longer find it.
○ Reinitialize object allocation bitmap to all zeros upon block initialization.
○ Although unlikely, some allocating threads may sleep during the above points and resume

allocation in a newly initialized block of now different type. They can detect such problems by
checking the type of the block. Rollback if necessary.

○ Crucial design choice: All blocks have the same structure. Same #bytes and object
allocation bitmaps are always at the same offset, regardless of block type.

[1] K. Fraser. Practical Lock-Freedom. PhD thesis, University of Cambridge Computer Laboratory. 2004.
[2] M. Maged. Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects. In: IEEE Transactions on Parallel and Distributed Systems. 2004.23

Challenges of Object Deallocation
● The basic problem is Safe Memory Reclamation (SMR).

○ A notoriously different problem in lock-free algorithms with lots of literature.
○ Common solutions: Epoch-based reclamation [1], hazard pointers [2].

● DynaSOAr’s approach: Block invalidation
○ Set all object slots to “1”, so that the block appears to be completely full to other threads.
○ Remove block from the active[T] index, so that other threads will no longer find it.
○ Reinitialize object allocation bitmap to all zeros upon block initialization.
○ Although unlikely, some allocating threads may sleep during the above points and resume

allocation in a newly initialized block of now different type. They can detect such problems by
checking the type of the block. Rollback if necessary.

○ Crucial design choice: All blocks have the same structure. Same #bytes and object
allocation bitmaps are always at the same offset, regardless of block type.

[1] K. Fraser. Practical Lock-Freedom. PhD thesis, University of Cambridge Computer Laboratory. 2004.
[2] M. Maged. Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects. In: IEEE Transactions on Parallel and Distributed Systems. 2004.24

Challenges of Object Deallocation
● The basic problem is Safe Memory Reclamation (SMR).

○ A notoriously different problem in lock-free algorithms with lots of literature.
○ Common solutions: Epoch-based reclamation [1], hazard pointers [2].

● DynaSOAr’s approach: Block invalidation
○ Set all object slots to “1”, so that the block appears to be completely full to other threads.
○ Remove block from the active[T] index, so that other threads will no longer find it.
○ Reinitialize object allocation bitmap to all zeros upon block initialization.
○ Although unlikely, some allocating threads may sleep during the above points and resume

allocation in a newly initialized block of now different type. They can detect such problems by
checking the type of the block. Rollback if necessary.

○ Crucial design choice: All blocks have the same structure. Same #bytes and object
allocation bitmaps are always at the same offset, regardless of block type.

[1] K. Fraser. Practical Lock-Freedom. PhD thesis, University of Cambridge Computer Laboratory. 2004.
[2] M. Maged. Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects. In: IEEE Transactions on Parallel and Distributed Systems. 2004.25

“Compare DynaSOAr with other
Lock-free Allocators”

26

ScatterAlloc [1]
● Super block → Region →

Page → Chunk
● Chunk size fixed after first

allocation within page.
○ Assumption: Many small same-size

allocations. (Same in DynaSOAr.)

● Page usage table modified with
atomic bit-wise operations.

● Allocation algorithm
○ Select page by hashing (linear probing)

SM ID and allocation size.
○ Skip regions with high fill level.
○ Trade higher fragmentation for faster allocation. (Opposite of DynaSOAr.)

● Deleting a page requires a lock (similar to invalidation in DynaSOAr).

[1] M. Steinberger, et. al. ScatterAlloc: Massively Parallel Dynamic Memory
Allocation for the GPU. In: InPar 2012.

active super block

27

XMalloc [2]
● Memoryblk. → Superblk.

→ Basicblk. → Coal.blk.
● Lock-free free lists for

empty basicblocks (for
pre-determined sizes).

(partly) free superblocks

free basicblocks

Allocated basicblock

● Simultaneous alloc. requests of the same warp are combined: Request one
basicblock and subdivide into coalescingblocks to deliver to threads.

● Unclear how SMR is solved.

[2] X. Huang, et. al. XMalloc: A Scalable Lock-free Dynamic Memory Allocator for Many-core Machines. In: CIT 2010.

using same technique in DynaSOAr
28

FDGMalloc [3]
● Private heaps: One heap per warp. (Similar to Hoard [4].)
● Programming Interface

○ malloc: Allocate memory in private heap.
(Less contention/competition among threads.)

○ No free operation. Can only free an entire
private heap.

○ Efficient memory allocation via
bump pointer allocation.

○ SMR is trivial (delete everything).

● Not expressive enough for SMMO.

[3] S. Widmer, et. al. Fast Dynamic Memory Allocator for Massively Parallel
Architectures. In: GPGPU-6.

[4] E. D. Berger, et. al. Hoard: A Scalable Memory Allocator for Multithreaded
Applications. In: ASPLOS 2000.

29

TBuddy/UAlloc [5]
● Large allocations: TBuddy, Small allocations: UAlloc

count #available

● Check semaphore (thread-safe counter)
to see if block available.

● Select block of suitable size and maybe
split a higher-order block.

● Updating the tree requires locking.
hierarchical bitmaps in DynaSOAr are lock-free!

● Arena (per-SM) → Chunk → Bin → Block
● Bitmaps to keep track of chunk/bin usage.
● Alloc.: Find bin in free list. If none, init. from chunk list.
● Chunks are allocated with TBuddy.
● Unclear how SMR is solved.

free lists for
bins of different sizes

bins contain same-size
allocations (blocks)

[5] I. Gelado, M. Garland. Throughput-Oriented GPU Memory Allocation.
In: PPoPP 2019.

30

Conclusion
● Other allocators have a hierarchy of containers (different kind of blocks) to

find free memory fast. DynaSOAr has a hierarchical index instead!
○ This simplifies the design.

● Other allocators are memory allocators, DynaSOAr is an object allocator.
○ Therefore, they cannot apply data layout optimizations (such as SOA).

● Other allocators trade higher fragmentation for faster (de)allocations.
DynaSOAr does the opposite!

● W.r.t. lock freedom: All GPU allocators based on atomic operations and
retry loops. Some allocators use a technique similar to block invalidation.

● Many different designs for CPU allocators. Private heaps are common.
○ E.g.: [6] uses privates heaps, hazard pointers for SMR, blocks states similar to DynaSOAr.

[6] M. M. Michael. Scalable Lock-Free Dynamic Memory Allocation. In: PLDI 2004.
31

“Explain the Overhead of Ikra-Cpp”

32

Overview

● Ikra-Cpp is a data layout DSL for SOA.
○ Combines SOA performance characteristics and notation of object-oriented programming.

● DynaSOAr is an extension of Ikra-Cpp with a dynamic memory allocator.
○ DynaSOAr and Ikra-Cpp have different layouts and different overheads.

● There are two kinds of overhead:
○ Compiler overheads: DSL makes core more complex, compiler fails to optimize.
○ Address computation overhead: DSL does some sort of memory address translation.

In Ikra-Cpp, this translation is free. In DynaSOAr, it is not free! 33

Data Layout DSL: Example
class Body : public IkraSoaBase<Body> {
 public:
 declare_field_types(Body, float, float, float,
 float, float, float, float)

 Field<Body, 0> pos_x = 0.0;
 Field<Body, 1> pos_y = 0.0;
 Field<Body, 2> vel_x = 1.0;
 Field<Body, 3> vel_y = 1.0;
 Field<Body, 4> force_x;
 Field<Body, 5> force_y;
 Field<Body, 6> mass;

 void move(float dt) {
 pos_x = pos_x + vel_x * dt;
 pos_y = pos_y + vel_y * dt;
 }
};

Can be used like a normal C++ class:

Body* b = new Body();
b->pos_x = 1.5f;
b->vel_x = 0.9f;

34

address translation
(in software/C++ code)

proxy type

Fake Pointers
Body* b = new Body();
printf(“%p\n”, b); // e.g.: 0x03b8000b01fc0008 -- Not a valid memory address.
printf(“%c\n”, *reinterpret_cast<char*>(b)); // Probably crashes

● Object pointer does not point to an actual memory location (fake pointer),
but encodes various information that is required for address translation.

● The main job of the data layout DSL is address translation.
○ Implemented entirely in C++.
○ Template metaprogramming: Field<...> classes are proxy types.
○ Operator overloading: Field<...> references (lvalues) can be implicitly converted to base

type references.

35

Structure/Components of a Fake Pointer

● Object pointers do not point to memory
addresses. Instead, we encode all
information that is required for address
computation/translation.

● Implemented with operator overloading,
template metaprogramming, macros.

36

● Fields are defined with proxy types.
● Field address computation depends on the runtime type of an object. (Because the runtime type

determines the object capacity of a block. The runtime type is not statically known.)

Address Computation Overhead: Hand-written SOA

struct SoaStruct {
 float pos_x[kNumObjects];
 float pos_y[kNumObjects];
 float vel_x[kNumObjects];
 float vel_y[kNumObjects];
 float force_x[kNumObjects];
 float force_y[kNumObjects];
 float mass[kNumObjects];
};

__global__ void codegen_test(SoaStruct* soa, int id) {
 soa->pos_y[id] = 1.2345f;
}

MOV R1, c[0x0][0x20];
MOV R2, c[0x0][0x148];
ISCADD R0.CC, R2.reuse,
c[0x0][0x140], 0x2;
SHR R2, R2, 0x1e;
IADD.X R2, R2, c[0x0][0x144];
IADD32I R4.CC, R0, 0x4000000;
MOV32I R0, 0x3f9e0419;
IADD.X R3, RZ, R2;
MOV R2, R4;
STG.E [R2], R0;

37

Address Computation Overhead: DynaSOAr

__global__ void codegen_test(Body* b) {
 b->pos_y_ = 1.2345f;
}

MOV R1, c[0x0][0x20];
MOV R5, c[0x0][0x140];
MOV R2, c[0x0][0x144];
SHF.R.U64 R0, R5, 0x18, R2;
LOP32I.AND R0, R0, 0xff000000;
SHR R0, R0, 0x16;
LOP32I.AND R3, R5, 0xffffffc0;
IADD32I R0, R0, 0x40;
LOP32I.AND R2, R2, 0xffff;
LOP32I.AND R5, R5, 0x3f;
IADD R3.CC, R0.reuse, R3;
SHR R0, R0, 0x1f;
IADD.X R0, R0, R2;
LEA R3.CC, R5.reuse, R3, 0x2;
LEA.HI.X R0, R5, R0, RZ, 0x2;
LEA R2.CC, R3.reuse, RZ;
LEA.HI.X P0, R3, R3, RZ, R0;
MOV32I R0, 0x3f9e0419;
ST.E [R2], R0, P0;

38

Measuring the Overhead of DynaSOAr’s DSL

39

Address Computation Overhead: Ikra-Cpp

__global__ void codegen_test(Body* b) {
 b->pos_y_ = 1.2345f;
}

MOV R1, c[0x0][0x20];
MOV32I R2, 0x0;
MOV R0, c[0x0][0x140];
MOV32I R3, 0x0;
MOV R5, c[0x0][0x144];
LEA R2.CC, R0.reuse, R2, 0x2;
LEA.HI.X R3, R0, R3, R5, 0x2;
MOV32I R0, 0x3f9e0419;
STG.E [R2+0x138b0], R0;

Very similar to hand-written SOA assembly.
Practically no overhead. For Ikra-Cpp CPU
mode: Identical assembly code.

40

Measuring the Overhead of Ikra-Cpp’s DSL
● No overhead of Ikra-Cpp

over hand-written SOA
● CPU: Same assembly

code generated.
● GPU: Slightly different

assembly code, but almost
same performance.

41

Conclusion
● Minimal overhead due to data layout DSL.

○ Ikra-Cpp: No overhead at all → Compiler can generate efficient code.
(But problems with vectorization in mode CPU!)

○ DynaSOAr: Some overhead due to more complex address translation.
■ Overhead is much lower than the benefit of SOA.
■ N-Body is getting a bit faster due to cache associativity issues.

● Address translation is usually done at the compiler/OS/hardware level, but we
do it in C++ due for engineering reasons.

42

“Discuss Integration with Mainstream
Parallel Languages such as OpenMP”

43

Run-Time vs. Compile-Time Coalescing
● Vectorization on x86: SSE (Streaming SIMD Extensions)
● Generate vector assembly instructions: E.g.: movdqa

C++ Code:
alignas(128) int r[1024];
alignas(128) int a[1024];
alignas(128) int b[1024];

#pragma omp parallel for simd
for (int i = 0; i < 1024; ++i) {
 r[i] = a[i] + b[i];
}

x86 Assembly:
movdqa 0x6020f0(%rax),%xmm0

CUDA Code:
__device__ int r[1024];
__device__ int a[1024];
__device__ int b[1024];

__global__ void kernel() {
 r[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];
}

PTX Assembly:
st.global.u32 [%rd7], %r4;

Compile-time
coalescing

Run-time
coalescing

No need to analyze
access pattern at

compile time!

44

st.global.u32 …
(covered by 3 vector loads)

Source:
https://stackoverflow.com/questions/5
6966466/memory-coalescing-vs-vecto
rized-memory-access

https://stackoverflow.com/questions/56966466/memory-coalescing-vs-vectorized-memory-access
https://stackoverflow.com/questions/56966466/memory-coalescing-vs-vectorized-memory-access
https://stackoverflow.com/questions/56966466/memory-coalescing-vs-vectorized-memory-access

45

I asked this question on
StackOverflow and it sparked
an interesting discussion…

https://stackoverflow.com/questions/56966466
/memory-coalescing-vs-vectorized-memory-ac
cess

Run-Time vs. Compile-Time Coalescing

https://stackoverflow.com/questions/56966466/memory-coalescing-vs-vectorized-memory-access
https://stackoverflow.com/questions/56966466/memory-coalescing-vs-vectorized-memory-access
https://stackoverflow.com/questions/56966466/memory-coalescing-vs-vectorized-memory-access

OpenMP SIMD Support
● SIMD-parallel for loops since OpenMP 4.0

float r[N]; float a[N]; float b[N];

void example() {
 #pragma omp parallel for simd
 for (int i = 0; i < N; ++i) {
 r[i] = a[i] + b[i];
 }
}

for loop must be in canonical form!

Note: Compilers with auto-vectorization do almost
the same thing. (Apart from __restict.)

46

#pragma omp parallel for
for (int i = 0; i < N; i += 8) {
 __m256 vec_a = _mm256_load_ps(&a[i]);
 __m256 vec_b = _mm256_load_ps(&b[i]);
 __m256 vec_r = _mm265_add_ps(vec_a, vec_b);
 _mm256_store_ps(&r[i], vec_r);
}

transform
Can only load consecutive (packed) floats. Otherwise, must
use different instruction. Compiler must understand the
memory access pattern!

OpenMP SIMD Support
● SIMD-parallel for loops since OpenMP 4.0

float r[N]; float a[N]; float b[N];

void example() {
 #pragma omp parallel for simd
 for (int i = 0; i < N; ++i) {
 r[i] = func(a[i], b[i]);
 }
}

#pragma omp declare simd
float func(float p1, float p2) {
 return p1 + p2;
}

Functions OK!

47

OpenMP SIMD Support
● SIMD-parallel for loops since OpenMP 4.0

float r[N]; float a[N]; float b[N];

void example() {
 #pragma omp parallel for simd
 for (int i = 0; i < N; ++i) {
 r[1 + i - 1] = a[2*i - i] + b[atoi(sqrt(i*i))];
 }
}

OpenMP compiler must be able to
find SIMD-suitable access pattern!

Note: Pretty sure, it will fail here…
(Yes, this technically, this is not the same as i.)

48

… or here

DynaSOAr parallel_do in OpenMP
● parallel_do<T, &T::func> is a parallel for loop, but it is not in canonical

form! It is more like a parallel iterator.

● Problem: DynaSOAr object space is not an array.

int main() {
 auto* h_allocator = new AllocatorHandle<AllocatorT>();

 #pragma omp parallel for simd
 for (Body& b : h_allocator->get_objects<Body>()) {
 b.update(/*dt=*/ 0.5f);
 }
} h_allocator->parallel_do<Body, &Body::update>(0.5f);

49

Conclusion
● Could DynaSOAr (parallel_do) be implemented in OpenMP? Yes
● But depends on the compiler to detect SIMD-suitable access patterns.

In practice, it will not work well! (This is a general problem of SIMD.)

template<typename T, void (T::*func)()>
void parallel_do() {
 #pragma omp parallel for
 for (int i = 0; i < h_allocator->get_num_blocks<T>(); ++i) {
 Block<T>* block = h_allocator->get_ith_allocated_block<T>(i);

 #pragma omp parallel for simd
 for (int j = 0; j < 64; ++j) {
 (block->get_ith_object(j)->*func)();
 }
 }
}

thread parallelism

SIMD parallelism

OpenMP is unlikely to generate efficient
vector code (due to SOA data layout DSL) 50

