
Memory-Efficient 
Object-Oriented 

Programming on GPUs
Matthias Springer

Doctoral Thesis Defense, 07/08/2019

1



Introduction
● Larger goal: Making GPU programming easier for developers from other 

domains (non-GPU experts)
● In particular: Object-oriented programming (OOP) on GPUs

○ OOP has many benefits: Abstraction, expressiveness, modularity, developer productivity, …
○ But it is avoided in high-performance computing (HPC) due to bad performance.

● Goal of this thesis: Making fast OOP available on SIMD arch./GPUs
○ Why is OOP slow on GPUs? Focusing on memory access performance.
○ Developing a simple object-oriented programming model for GPUs: SMMO
○ Optimizing the memory access of SMMO application with a new CUDA framework.
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Thesis Overview and Prototypes
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Background

5



Background: GPU Architecture
● NVIDIA GP104 (GeForce GTX 1080)
● 20 streaming multiprocessors (SMs)
● 128 CUDA cores per SM
● Total: 20 * 128 = 2560 CUDA cores

● 8 GB device memory
● L1 per SM, shared L2 cache

Source: NVIDIA GeForce GTX 1080 whitepaper
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But CUDA gives us the illusion 
of having 2560 cores.

But CUDA gives us the illusion 
of having 2560 cores.
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Handout only: Parallelism on GPUs / CUDA
● Thread-level Parallelism: 2560 CUDA cores

○ SIMD: Every 32 consecutive cores (warp; tid. i*32 … (i+1)*32 - 1) have the same control flow.
(Because it is really only one core.)

○ MIMD: Every warp has its own control flow.

● Instruction-level Parallelism
○ Sometimes, a core can run more than just one instruction at a time…
○ Not relevant for this work
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Handout only: Performance Problems on GPUs
● Non-uniform Control Flow

○ This happens when programmers assume they can program a GPU like a CPU…
○ If the control flow diverges within a warp, both paths are executed sequentially.

if

then... else...

t0, t1

t0
t1
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If the programmer loads 4 bytes, 
then the mem. controller loads 128 
bytes and throws 124 bytes away

Performance Problems on GPUs
● Device (Global) Memory Access

○ The GPU memory controller is bad at accessing small memory blocks
○ Simplified view: The memory controller always accesses 128-byte blocks

(L1/L2 cache line size)

○ Memory coalescing: The memory controller can coalesce (combine) requests that are on the 
same L1/L2 cache line on a per-warp basis (threads ttid with tid ∈ [32*i; 32*(i+1))).

○ In different words: A physical core always accesses memory in aligned, 128-byte blocks.
○ Rule of thumb: Threads in a warp should access spatially local memory addresses
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If the programmer loads 4 bytes, 
then the mem. controller loads 128 
bytes and throws 124 bytes away



Performance Problems on GPUs
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good coalescing

bad coalescing

Source:
CUDA C Programming Guide



Performance Problems on GPUs
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no coalescing

Source:
CUDA C Programming Guide

...

32x 128B

Strided / Random Memory Access



Problems with OOP on GPUs
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Common Belief: OOP is Slow

Object-oriented programming is too slow for high-performance computing.
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One of the main issues of scientific computing is performance. [...] Object oriented programming is 
observed slower than functional programming. [P. Patel, M.Sc. Thesis, Univ. of Edinburgh, 2006]

The object-oriented programming (OOP) paradigm offers a solution to express reusable algorithms and 
abstractions through abstract data types and inheritance. However, [...] manipulating abstractions usually 
results in a run-time overhead. We cannot afford this loss of performance since efficiency is a crucial 
issue in scientific computing. [N. Burrus, et. al. MPOOL 2003]

While object-oriented programming is being embraced in industry [...], its acceptance by the parallel 
scientific programming community is still tentative. In this latter domain performance is invariably of 
paramount importance, where even C++ is considered suspect, primarily because of real or perceived 
loss of performance. [K. Davis, et. al. ECOOP 2008 Workshop Reader]

“
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Common Belief: OOP is Slow

Object-oriented programming is too slow for high-performance computing.
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Let us identify the reasons why 
OOP is slow in HPC (esp. GPUs) 
and see if we can optimize these 

performance problems.



Problem with OOP on GPUs
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● Data Layout: Most languages/compilers (esp. C++/CUDA) do not allow 
programmers to customize the layout of objects in memory.



Structure of Arrays (SOA) Data Layout

● AOS: Standard layout of most compilers/systems
● SOA: Best practice for SIMD/GPU programmers
● [C++] Choose one: SOA or OOP. We want to have both!
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This is no longer OOP.



Handout only: Benefits/Disadvantages of SOA
● Benefits of SOA

○ Suitable for vector loads/stores → Good memory coalescing on GPUs
(Only if the program accesses consecutive values at the same time.)

○ Can benefit L1/L2 cache utilization: Unused fields do not occupy cache lines.
○ Sometimes lower memory footprint: Only SOA arrays must be aligned, not every object.

● Disadvantages of SOA
○ Code is hard to read; breaking language abstractions if there is no support for custom 

object layouts in the programming language (e.g., C++).

● There are experimental languages with customizable data layout, but they 
have poor GPU support. E.g.: Shapes [1], ispc [2]
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[1] J. Franco, et. al. You Can Have It All: Abstraction and Good Cache Performance. Onward! 2017.
[2] M. Pharr, et. al. ispc: A SPMD compiler for high-performance CPU programming. InPar 2012.



Handout only: N-body Perf. with AOS/SOA
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(lower is better)

Much better performance with SOA!



Problem with OOP on GPUs
● Data Layout: Most languages/compilers (esp. C++/CUDA) do not allow 

programmers to customize the layout of objects in memory.
● Dynamic Memory Management: It is supported, but slow.

Body* b = new Body();
delete b;
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Allocating memory dynamically in the kernel can be tempting because it allows GPU code to look 
more like CPU code. But it can seriously affect performance. [...] The kernel runs in 1500ms when 
using __device__ malloc() and 27ms when using pre-allocated memory. In other words, the 
test takes 56x longer to run when memory is allocated dynamically within the kernel. 

“ ”
https://stackoverflow.com/questions/13480213/how-to-dynamically-allocate-array
s-inside-a-kernel/13485322#13485322

https://stackoverflow.com/questions/13480213/how-to-dynamically-allocate-arrays-inside-a-kernel/13485322#13485322
https://stackoverflow.com/questions/13480213/how-to-dynamically-allocate-arrays-inside-a-kernel/13485322#13485322


Problem with OOP on GPUs
● Data Layout: Most languages/compilers (esp. C++/CUDA) do not allow 

programmers to customize the layout of objects in memory.
● Dynamic Memory Management: It is supported, but slow.

● Virtual Function Calls: Regular calls are by a factor of 10x faster due to 
inlining. In addition, virt. function calls can cause warp divergence.

● 64-bit Pointers: Objects are referred to with 64-bit pointers. This can 
increase the size of objects, compared to 32-bit integers.

TH
IS TH

ESIS

23



Problem with OOP on GPUs
● Data Layout: Most languages/compilers (esp. C++/CUDA) do not allow 

programmers to customize the layout of objects in memory.
● Dynamic Memory Management: It is supported, but slow.

● Virtual Function Calls: Regular calls are by a factor of 10x faster due to 
inlining. In addition, virt. function calls can cause warp divergence.

● 64-bit Pointers: Objects are referred to with 64-bit pointers. This can 
increase the size of objects, compared to 32-bit integers.

TH
IS TH

ESIS

24

Pointer compression [1]

Switch-case statements or 
instrumentation-based techniques [2]

[1] K. Venstermans, et. al. Object-Relative Addressing: Compressed Pointers in 64-Bit Java
Virtual Machines. ECOOP 2007.

[2] G. Aigner, et. al. Eliminating virtual function calls in C++ programs. ECOOP 1996.



Expressing GPU Parallelism in 
Object-oriented Programs
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● Parallel array operations [ARRAY16]
○ Array::pmap(&block)

○ Array::pcombine(others…, &block)

○ Array class::pnew(n, &block)

○ Array::preduce(&block)

○ Array::pzip(others…)

○ Array::peach(&block)

● Computation graph is fused into a small number of efficient CUDA kernels.
● Contribution of Ikra-Ruby:

○ Modular GPU programming style in a dynamically-typed language: Combine multiple small 
parallel array operations to build a complex program.

○ Kernel fusion of computation graph through type inference [ARRAY17].

Ikra-Ruby: A Parallel Array Interface for Ruby

Functional array operations are 
executed lazily and can be chained, 

forming a computing graph.

26

only basic Ruby features in block,
no object-oriented programming



Handout only: Ikra-Ruby Architecture

● Parallel operations return 
an array command

● Programmers build a 
computation graph of 
parallel operations

● Access of result (to_a, 
[], each) triggers code 
generation and GPU 
execution.
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From Ikra-Ruby to Ikra-Cpp
● Ikra-Ruby is suitable for mathematical computations.

E.g.: Computation graph of linear algebra operations in machine learning
● But: A simpler model is sufficient for many object-oriented HPC applications.

○ pmap/preduce/…: Functional operations → Immutability of state
○ Object-oriented programming in mainstream languages: Imperative state changes
○ No need for pmap/preduce/…. peach is sufficient.

● Vision: Develop a limited but more optimized C++/CUDA backend Ikra-Cpp 
and integrate it into Ikra-Ruby (future work).
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Ikra-Cpp: A CUDA/C++ Framework for SMMO

● A lower-level CUDA/C++ programming interface for SMMO applications.
● SMMO: Single-Method Multiple-Objects [WPMVP18, ECOOP19]
● OOP-speech for SIMD (Single-Instruction Multiple-Data)
● Main operation: parallel_do<T, &T::func>(args…) 

○ Run a method T::func for all objects of a type T.
○ Same as Ikra-Ruby: objects.peach do |o| o.func(args…) end

○           Objects can be created/deleted inside of a parallel do-all.

● Create many objects at once: parallel_new<T>(n, args…)
○ Same as Ikra-Ruby: (0...n).peach do |i| T.new(i, args…) end

● Sequential do-all: device_do<T, &T::func>(args…)

29

arbitrary C++ code
allowed, including
obj.-orient. programming



SMMO: Single-Method Multiple-Objects (1/3)

30

Run A::func for all objects 
of type A (in parallel).

● Ikra-Cpp assigns objects to threads.
● Assignment is such that memory 

coalescing is maximized. (More on 
that later…)



SMMO: Single-Method Multiple-Objects (2/3)
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New object

Deleted object

● Newly created objects are not 
processed by the same 
parallel_do.

● An object obj of type A may only be 
deleted by its assigned thread.



SMMO: Single-Method Multiple-Objects (3/3)
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Handout only: Full SMMO Interface
● parallel_do<T, &T::func>(args…): Launches a CUDA kernel that runs a member function T::func for all 

objects of type T and subtypes (sep. kernel) existing at launch time. T::func may allocate new objects but they are 
not enumerated by this parallel do-all. T::func may deallocate any object of different type U != T, but this is the 
only object of type T it may deallocate (delete itself).

● parallel_new<T>(n, args…): Launches a CUDA kernel that instantiates n objects of type T. This operation calls 
the constructor of T in parallel with an object index between [0; n) as first argument, followed by args….

● device_do<T, &T::func>(args…): Runs a member function T::func for all object of type T in the current CUDA 
thread. Can only be used inside of a parallel do-all or a manually launched CUDA kernel.

● new(d_allocator) T(args…): Allocates a new object of type T and returns a pointer to the object. Provided by 
DynaSOAR.

● destroy(d_allocator, ptr): Deletes an object with pointer ptr, assuming that the object was allocated with 
d_allocator. Provided by DynaSOAr.

● parallel_defrag<T, k1, k2>(): Initiates defragmentation of objects of type T. Internally, this function may run 
multiple defragmentation passes depending on parameters k1 and k2. Cannot be used in device code. Provided by 
CompactGpu.
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SMMO Examples
[ECOOP-Artifact 2019]
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Example: N-Body Simulation

35

auto* h_allocator =
    new HAllocatorHandle<AllocatorT>();
h_allocator->parallel_new<Body>(65536);

Initialization

for (int i = 0; i < kIterations; ++i) {
    h_allocator->parallel_do<Body, &Body::compute_force>();
    h_allocator->parallel_do<Body, &Body::update>();
}

delete h_allocator;

Main Loop



Handout only: Example: N-Body Simulation
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#include "dynasoar.h"

// Pre-declare all classes. This simple example has only one class.
class Body;
using AllocatorT = SoaAllocator</*max_num_obj=*/ 16777216, /*T...=*/ Body>;
__device__ DAllocatorHandle<AllocatorT> d_allocator;



Example: N-Body Simulation

37

class Body : public AllocatorT::Base {    // Can subclass other user-defined class.
 public:
  // Pre-declare all field types.
  declare_field_types(Body, float, float, float, float, float, float, float)

 private:
  // Declare fields with proxy types but use like normal C++ fields.
  Field<Body, 0> pos_x_;
  Field<Body, 1> pos_y_;
  Field<Body, 2> vel_x_;
  Field<Body, 3> vel_y_;
  Field<Body, 4> force_x_;
  Field<Body, 5> force_y_;
  Field<Body, 6> mass_;

CUDA/C++ embedded data 
layout DSL (for SOA layout)



Example: N-Body Simulation
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class Body : public AllocatorT::Base {
  /* … */

  __device__ Body(float pos_x, float pos_y, float vel_x, float vel_y, float mass)
      : pos_x_(pos_x), pos_y_(pos_y), vel_x_(vel_x), vel_y_(vel_y), mass_(mass) {}

  // This constructor is invoked by parallel_new.
  __device__ Body(int id) : Body(/*pos_x=*/ random_float(0, 1), /*...*/) {}

  __device__ void update(float dt) {
    vel_x_ += force_x_ * dt / mass_;
    vel_y_ += force_y_ * dt / mass_;
    pos_x_ += dt * vel_x_;
    pos_y_ += dt * vel_y_;
  }



class Body : public AllocatorT::Base {
  /* … */

 public:
  __device__ void apply_force(Body* other) {
    if (other != this) {
      float dx = pos_x_ - other->pos_x_;  float dy = pos_y_ - other->pos_y_;
      float dist = sqrt(dx*dx + dy*dy);
      float F = kGravityConstant * mass_ * other->mass_ / (dist * dist);
      other->force_x_ += F * dx / dist;  other->force_y_ += F * dy / dist;
    }
  }

  __device__ void compute_force() {
    force_x_ = force_y_ = 0.0f;
    d_allocator->device_do<Body, &Body::apply_force>(this);
  }

Handout only: Example: N-Body Simulation
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Handout only: Example: N-Body Simulation
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class Body : public AllocatorT::Base {
  /* … */

 public:
  __device__ void apply_force(Body* other) {
    if (other != this) {
      float dx = pos_x_ - other->pos_x_;  float dy = pos_y_ - other->pos_y_;
      float dist = sqrt(dx*dx + dy*dy);
      float F = kGravityConstant * mass_ * other->mass_ / (dist * dist);
      other->force_x_ += F * dx / dist;  other->force_y_ += F * dy / dist;
    }
  }

  __device__ void compute_force() {
    force_x_ = force_y_ = 0.0f;
    d_allocator->device_do<Body, &Body::apply_force>(this);
  }

for (Body* b : get_objects<Body>) {
  b->apply_force(this);
}



Examples of SMMO Applications

● Implemented and evaluated Ikra-Cpp/DynaSOAr with 8 SMMO applications.
● SMMO can express many different patterns of HPC applications, e.g.:

○ Cellular automata: game-of-life, sugarscape, traffic, wa-tor
○ Agent-based modelling: sugarscape, traffic, wa-tor
○ Dynamic tree construction/update: barnes-hut
○ Applications w/ graph-structured data: structure, traffic, breadth-first search

41



Example: N-Body Simulation

parallel_new<Body>(500);

for (int i = 0; i < 1000; ++i) {
  parallel_do<Body, &Body::compute_force>();
  parallel_do<Body, &Body::update>();
}

42

https://docs.google.com/file/d/1EbpN-ltDuAt4xNb7WDaDTZhpsSDXzIsG/preview


Example: N-Body with Collisions
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https://docs.google.com/file/d/1yW84cNbQdx0U3-MDY1XQbsw9PjrtoEmY/preview


Example: Barnes-Hut N-Body Simulation
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https://docs.google.com/file/d/14--GlDbG4YJyLg1SakL3JW2OU3yezmwd/preview


Example: Fish-and-Shark (wa-tor)

45

https://docs.google.com/file/d/18Dnv4yFdEcMNjmDUt_zQyKQRDVzTF3qU/preview


Example: Nagel-Schreckenberg Simulation

46

https://docs.google.com/file/d/1xJYBIxRL_JD55xlmaB7nQInxax20h0g8/preview


An SOA Data Layout DSL for Ikra-Cpp [WPMVP18]

● Ikra-Cpp provides two ways of memory allocation:
new T(), parallel_new<T>(n)

● Objects are not allocated in one block of memory, but in a custom layout.
● To allow for OOP abstractions: Embedded C++/CUDA data layout DSL

47

class Body : public AllocatorT::Base {
 public:
  declare_field_types(Body, float, float, float, float, float, float, float)

 private:
  Field<Body, 0> pos_x_;
  Field<Body, 1> pos_y_;
  Field<Body, 2> vel_x_;
  Field<Body, 3> vel_y_;
  Field<Body, 4> force_x_;
  Field<Body, 5> force_y_;
  Field<Body, 6> mass_;

Proxy types are implicitly 
converted to base types.



Handout only: Implicit Conversion of Proxy Types

● Objects are referred to with fake pointers: Encoding all information required 
to compute the physical memory location of each field value.

● Objects and proxy type values always appear as lvalues.
● Embedded DSL is implemented with advanced C++ features: template 

metaprogramming, operator overloading, type punning

48

template<int Index>
class Field {
  using BaseT = /* Index-th predeclared type */;
  operator T&() const { return *data_ptr(); }

  T* data_ptr() const {
    uint64_t ptr = reinterpret_cast<uint64_t>(this);
    // Compute physical memory location of value based on ptr. We could implement an arbitrary object
    // layout here (not just SOA). See thesis for details.
  }
}



DynaSOAr: A Dynamic Memory Allocator 
with SOA Performance [ECOOP 2019]
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Design Requirements
● Programming Interface: new / delete operations
● Memory Layout: Efficient memory access in parallel_do operations

○ Goal: Achieve coalesced (vectorized) memory access with SOA-style allocation.
○ Trading faster data access for slower memory (de)allocation time.
○ Low fragmentation is key: Fragmented data requires more vector transactions.

● Lock-free Implementation: Locking can easily lead to deadlocks on GPUs
50

L1/L2 cache
line size
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Heap Layout
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Heap Layout
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No fragmentation.

GOOD!
Contributes to 
fragmentation.

BAD!

No fragmentation.

GOOD!



Handout only: Heap Layout
● Objects are allocated in blocks in SOA layout.
● Blocks contain objects of only one C++ class/struct type.
● All blocks have the same size in bytes but their capacity (max. #objects) 

depends on the size of their objects.
● Object allocation bitmaps keep track of free/occupied object slots.

○ (De)allocation: Changed with atomic bitwise operations (e.g., atomicAnd).
○ Always 64 bit in size (maximum capacity).
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Block (Multi)States

● free: Contains no objects.
● allocated[T]: Contains only objects

of C++ class/struct T.
● active[T]: Is allocated[T] and not full.

(Space for at least 1 more object)

55



Block State Bitmaps
● Block states are indexed by bitmaps.
● Indices may be temporarily inconsistent

with actual block states, but they are
eventually consistent.

● Main challenge: Algorithms must be able
to handle such inconsistencies.

56



Algorithm: Object Allocation
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Example: new Spring(), Fast path

Find active block
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Example: new Spring(), Fast path

Reserve object slot
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Example: new Spring(), Fast path
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Handout only: Fake Pointers
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Handout only: Fake pointers
● Problem: Objects are not stored in one block of memory. How to refer to them 

with an object pointer?
● Solution: Object pointers are not memory locations but encode all 

information required to compute the physical location of each field (fake 
pointer).

● Pointers are 64 bit in CUDA, but only a few bits are actually utilized because 
GPUs have less than 32 GB memory. We can store additional information 
in unused bits.

● Fake pointer = Address of DynaSOAr block + additional information encoded 
in unused bits
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Additional Optimizations
● Hierarchical Bitmaps: Finding set bits in a large bitmap is slow. We can find 

bits in a hierarchical bitmap with a logarithmic number of accesses.

63

Block state bitmaps



Additional Optimizations
● Hierarchical Bitmaps: Finding set bits in a large bitmap is slow. We can find 

bits in a hierarchical bitmap with a logarithmic number of accesses.
● Allocation Request Coalescing: A leader thread reserves object slots on 

behalf of all allocating threads in the warp [1].

But CUDA gives us the illusion 
of having 2560 cores.

Extended version of Alg. 1. 
Implemented with CUDA 

warp-level primitives.

64

[1] X. Huang, et. al. XMalloc: A Scalable Lock-free Dynamic 
Memory Allocator for Many-core Machines. CIT 2010.



Additional Optimizations
● Hierarchical Bitmaps: Finding set bits in a large bitmap is slow. We can find 

bits in a hierarchical bitmap with a logarithmic number of accesses.
● Allocation Request Coalescing: A leader thread reserves object slots on 

behalf of all allocating threads in the warp.
● Efficient Bit Operations: Utilize bit-level integer intrinsics (e.g., ffs).
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Find first set: Return index 
of first set bit in integer.



Additional Optimizations
● Hierarchical Bitmaps: Finding set bits in a large bitmap is slow. We can find 

bits in a hierarchical bitmap with a logarithmic number of accesses.
● Allocation Request Coalescing: A leader thread reserves object slots on 

behalf of all allocating threads in the warp.
● Efficient Bit Operations: Utilize bit-level integer intrinsics (e.g., ffs).
● Bitmap Rotation: To reduce the probability of threads choosing the same bit, 

rotate-shift bitmaps before selecting a bit (i.e., before ffs etc.).
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Related Work and Challenges
● DynaSOAr is an object allocator. Other allocators request X number of 

bytes. We allocate structured data (objects).
○ DynaSOAr is aware of the structure of its allocations → Better optimizations (SOA data layout)

● Main challenges
○ Low fragmentation through blocks states: Always allocate in active[T] blocks. This is less 

efficient than hashing (what other allocators do [1, 2]). Algorithms must be optimized!
○ Safe memory reclamation: When is it safe to delete a block?

(We have may have many concurrent allocate/deallocate operations.)
○ (Eventual) consistency between various internal data structures.

(e.g.: block states and block state bitmaps)

67

[1] A. V. Adinetz, D. Pleiter. Halloc: A High-Throughput Dynamic Memory Allocator for GPGPU Architectures. GPU Technology Conference 2014.
[2] M. Steinberger, M. Kenzel, B. Kainz, D. Schmalstieg. ScatterAlloc: Massively Parallel Dynamic Memory Allocation for the GPU. InPar 2012.



Benchmarks: Running Time

68

● Baseline: Without dynamic memory allocation



wa-tor Fragmentation
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CompactGpu: GPU Memory 
Defragmentation [ISMM 2019]
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Why Memory Defragmentation?
● Space Efficiency: Lower overall memory consumption.
● Performance: Reading/writing compact, less fragmented data requires fewer 

memory access transactions.
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Why Memory Defragmentation?
● Space Efficiency: Lower overall memory consumption.
● Performance: Reading/writing compact, less fragmented data requires fewer 

memory access transactions.
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Block Merging: 1 + 1 = 1
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Take 2 blocks

≤ 50% full ≤ 50% full

Do this in parallel for all eligible blocks:



Block Merging: 1 + 2 = 2
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Take 3 blocks

≤ 66% full ≤ 66% full

Do this in parallel for all eligible blocks:

≤ 66% full

still ≤ 66% full

need multiple
passes!



Block Merging: 1 + n = n
● S1 can be merged into T1 if S1 and T1 are ≤ 50% full.
● S1 can be merged into T1, T2 if S1, T1, T2 are ≤ 66.6% full.
● S1 can be merged into T1, …, Tn if S1, T1, …, Tn are ≤ n/(n+1) full.

● Defragmentation factor n
can be configured.

○ Higher n: Better defrag. guarantees.
○ Lower n: A bit faster, fewer passes.

● Blocks that are ≤ n/(n+1) full are
defrag. candidates (eligible).
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Handout only: Defragmentation by Block Merging
● After defragmentation:

○ All blocks with fill level ≤ n/(n+1) are gone.
○ Only blocks with fill level > n/(n+1) are left over.
○ Therefore, fragmentation is ≤ 1 - n/(n+1) = 1/(n+1).

● One defragmentation pass eliminates all source blocks: 1/(n+1) of all 
defragmentation candidates.

○ To eliminate all defragmentation candidates, we need log(n+1)/n #candidates many passes.
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Handout only: Defragmentation by Block Merging

● Why do we require that all n blocks are ≤ n/(n+1) full instead of all blocks 
together ≤ 100% full?

○ Makes it easier to identifier blocks that contribute to defragmentation.
○ More uniform control flow (similar number of object relocations).

● Is there a better way to choose source/target blocks?
○ Defragmentation candidate state is encoded in only 1 bit, so no, unless we use more than 1 bit.
○ Even then, unlikely to result in faster defragmentation because there would be more control

flow divergence.
○ See discussion in thesis.
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Handout only: CompactGpu is...
● configurable: Target fragmentation rate can be tuned.
● in-place: No auxiliary storage necessary. Entire heap remains useable.
● incremental: A single defragmentation pass is fast and compacts only a 

fraction of the heap. Multiple passes are required for full defragmentation.
● a stop-the-world approach
● fully parallel: Every step is a perfectly parallel CUDA kernel.
● no order-preserving: Objects may be arranged in a different order.
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Extension of DynaSOAr Block States
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Keeping Track of Defragmentation Candidates
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Defragmentation Overview
● Defragmentation is manual: Programmer has to initiate defragmentation.
● Programmer specifies the C++ type that should be defragmented.

1. Choose source/target blocks (parallel prefix sum).
2. Copy objects from source to target blocks (very efficient due to SOA layout).
3. Store forwarding pointers in old locations.
4. Scan the heap and rewrite pointers to old locations.

(Fast due to optimizations that reduce #memory accesses.)
5. Update block state bitmaps.
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Step 1: Choose Source/Target Blocks

82

Parallel prefix sum



Step 2: Copy Objects
● Fully parallel: One thread per source object slot
● No synchronization necessary: Every thread can compute its source/target 

object slot/block index based on R, thread ID and object allocation bitmaps.
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Step 2: Copy Objects
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Step 3: Store Forwarding Ptrs. in Source Blocks
● Overwrite data segment of source blocks with forwarding pointers.
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Spring*[64] forwarding_ptrs;



Step 4: Rewrite Pointers to Relocated Objects
● Conceptually: A parallel do-all operation

parallel_do<NodeBase, &AllocatorT::Base::rewrite_field<NodeBase, 0>>()

● We are rewriting every field that
could potentially have a pointer
to a relocated object.

● Discussion: C++ Boehm GC [1]
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First field (idx. 0) of NodeBase 
has type Spring*[3].

[1] H. J. Boehm. Space Efficient Conservative Garbage 
Collection. PLDI 1993.



Step 4: Rewrite Pointers to Relocated Objects
● Conceptually: A parallel do-all operation

parallel_do<NodeBase, &AllocatorT::Base::rewrite_field<NodeBase, 0>>()
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Spring*[64] forwarding_ptrs;

template<typename T, int Idx>
void AllocatorT_Base::rewrite_field {
    void** addr = &get_field<Idx>();
    int s_bid = extract_bid(*ptr);

    if (s_bid < R[B] && defrag[T][s_bid]) {
        int s_oid = extract_oid(*ptr);
        *ptr = heap[s_bid].data.forwarding_ptrs[s_oid];
    }

}



Experimental Results
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Conclusion
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Conclusion
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● Object-oriented programming is not slow if properly optimized.
● This thesis: 3 memory access optimizations, eliminating OOP overhead.

○ An embedded SOA data layout DSL for C++/CUDA.
○ DynaSOAr: A dynamic memory allocator with efficient memory access.
○ CompactGpu: A memory defragmentation system for GPUs, bringing performance of 

dynamically allocated memory accesses closer to SOA layout performance.

● Potential future work
○ Integrate Ikra-Cpp into a high-level language (e.g., as part of Ikra-Ruby).

(Note: Many high-level language have a garbage collector!)
○ Explore if/how SMMO can be extended to a functional OOP style.
○ Give programmers more control over data placement of dynamic allocations.
○ Develop a metaobject protocol based on Ikra-Cpp’s data layout DSL.
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Main Contributions of this Thesis
● The SMMO (Single-Methods Multiple-Objects) programming model and 

eight SMMO example applications.
● An embedded SOA data layout DSL in C++/CUDA.
● An extension of the SOA data layout to dynamic object set sizes. 

Technically, this is no longer an SOA layout, but it has the same performance characteristics.

● DynaSOAr: A lock-free, hierarchical GPU memory allocator; the first one with 
a custom object layout.

● A lock-free, hierarchical bitmap data structure.
● CompactGpu: An efficient memory defragmentation system for GPUs.
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Future Research Directions
● Is SMMO suitable for garbage collected languages?

In SMMO, we run a method for all heap-allocated objects. These objects are not necessarily reachable from other 
objects and a GC may delete them.

● Can SMMO be generalized to functional OOP [1, 2]?
In functional OOP, the state of objects is immutable. Changing a field of an object results in a new object. We would 
require a parallel_map instead of a parallel_do. How does this affect object allocation? Furthermore, how 
easy/intuitive will such a programming model be for programmers?

● Can we give programmers more control over the placement of allocations?
This could improve memory coalescing and cache utilization but it is a tedious job.
Possible direction: Let programmers provide a comparator function (as used in sorting) and use it to select active 
blocks. We would need to keep more blocks active than before, thus increasing fragmentation.

● Can Ikra-Cpp’s DSL be extended to a fully-fledged metaobject protocol [3]?
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[1] M. Felleisen. Functional Objects. In: ECOOP 2004.
[2] K. Emoto, K. Matsuzaki, Z. Hu, A. Morihata, H. Iwasaki. Think Like a Vertex, Behave Like a Function! A Functional DSL

for Vertex-Centric Big Graph Processing. In: ICFP 2016.
[3] S. Chiba. A Metaobject Protocol for C++. In: OOPSLA 1995.



Backup Slides
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What are the Benefits of OOP?
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● Many applications have an inherent object structure (e.g., in agent-based 
modelling). We want the code to reflect this structure.
Benefits: abstraction, encapsulation, inheritance, …

● Code is more readable compared to a hand-written SOA layout, e.g.:
○ OOP: parent_->children_[child_index_] = single_child;
○ SOA: TreeNode_children[TreeNode_child_idx[id]][TreeNode_parent[id]] = single_child;

● Without dynamic memory allocation, programmers must maintain an 
inactive bit for deleted object or entirely rewrite the application (or 
implement their own allocator). See wa-tor example in the thesis.

● Richer type information: Type checker can detect programming mistakes 
earlier and programmers do not have to maintain type IDs (see barnes-hut).



wa-tor with/without OOP/Dyn. Mem. Allocation
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(b) without dyn. alloc. (methods omitted)

(a) with dyn. alloc.
● All fields are merged into a single 

structure in (b).
● The structure/network of cells is fixed, so 

they can be statically allocated.



Thread Assignment during parallel_do
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Thread Assignment during parallel_do

● Same algorithm is used for 
selecting source blocks in 
CompactGpu.
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Additional DynaSOAr Optimizations
● Hierarchical Bitmaps: Finding set bits in a large bitmap is slow. We can find 

bits in a hierarchical bitmap with a logarithmic number of accesses.
● Allocation Request Coalescing: A leader thread reserves object slots on 

behalf of all allocating threads in the warp.
● Efficient Bit Operations: Utilize bit-level integer intrinsics (e.g., ffs).
● Bitmap Rotation: To reduce the probability of threads choosing the same bit, 

rotate-shift bitmaps before selecting a bit (i.e., before ffs etc.).
● Retry Active Block Lookups: If no active block could be found (e.g., due to 

bitmap inconsistencies), retry for a constant number of times.
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Benchmarks: Space Efficiency
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wa-tor: Pinpointing DynaSOAr’s Speedup
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wa-tor Scaling Benchmark
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Linux Scalability Benchmark: Pure (de)alloc
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CompactGpu Microbenchmark Results
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CompactGpu Microbenchmark Results

● In reality, we need fewer defragmentation passes to eliminate all 
defragmentation candidates.

○ Fewer than the theoretical worst-case #passes: log(n+1)/n #candidates
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CompactGpu Benchmark Characteristics
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