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Introduction / Motivation

● Goal: Make GPU programming easier to use.

● Focus: Object-oriented programming on GPUs/CUDA.

– Many OOP applications in high-performance computing.

– DynaSOAr [1]: Dynamic memory allocator for GPUs.

– CompactGpu: Memory defragmentation for GPUs, to make 
allocations more space/runtime efficient.

[1] M. Springer, H. Masuhara. DynaSOAr: A Parallel Memory Allocator for Object-oriented Programming on GPUs with Efficient Memory Access.  ECOOP 2019.
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Background: GPU Architecture
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Memory Coalescing

If the threads of a physical 
core access memory within 
the same aligned 128-byte 
window (L1/L2 cache line), 
the those accesses are 
combined into 1 memory 
transaction by the memory 
controller.

Source: CUDA C Programming Guide
Because the hardware

really operates on
128-byte vector registers.

Because the hardware
really operates on

128-byte vector registers.
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Worst Case: No Memory Coalescing

Threads of a physical core 
(warp) access memory of 
totally different L1/L2 cache 
lines.

Before attempting any other 
optimization, try to improve 
memory coalescing!

= 4096B



06/23/2019 CompactGpu - ISMM 2019 7

Why GPU Memory Defragmentation?

● Space Efficiency: Reduce overall memory consumption.

– Avoid premature out-of-memory errors.

● Runtime Efficiency: Vectorized access is more efficient.

– Accessing compact data requires fewer vector transactions 
(→more memory coalescing) than accessing fragmented data.
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Memory Defragmentation:
Concept and Main Ideas
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Dynamic Memory Allocation on GPUs

● Until recently, not supported well and not widely utilized yet

● Existing dynamic GPU memory allocators

– CUDA allocators (new/delete): Extremely slow and unoptimized

– Halloc [1], ScatterAlloc/mallocMC [2]: Very fast (de)allocation time

– DynaSOAr [3]: Fast (de)allocation time, efficient access of allocations

● Memory allocation characteristics on GPUs

– Massive number of concurrent (de)allocations

– Most allocations are small and have the same size
(due to mostly regular control flow)

[1] A. V. Adinetz and D. Pleiter. Halloc: A High-Throughput Dynamic Memory Allocator for GPGPU Architectures. GPU Technology Conference 2014.
[2] M. Steinberger, M. Kenzel, B. Kainz, D. Schmalstieg. ScatterAlloc: Massively Parallel Dynamic Memory Allocation for the GPU. InPar 2012.
[3] M. Springer, H. Masuhara. DynaSOAr: A Parallel Memory Allocator for Object-oriented Programming on GPUs with Efficient Memory Access.  ECOOP 2019.

Allows us the implement
memory defrag. more efficiently

than on other platforms.

Allows us the implement
memory defrag. more efficiently

than on other platforms.
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Overview

● CompactGpu: A memory defragmentation system for the 
DynaSOAr memory allocator.

– Basic Idea: Defragmentation by block merging.

– Optimization: Fast pointer rewriting based on bitmaps.

– Main CompactGpu techniques could be implemented in other 
allocators.
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Main Design Choices and Requirements

● In-place defragmentation: To save space...

– Defrag. by block merging: Combine blocks that are partly full.

● Fully parallel implementation

–  CompactGpu is a set of CUDA kernels.

● Stop-the-world approach: Run defragmentation when no other 
GPU code is running.

● Manual: Programmers initiate defragmentation manually or use 
a heuristic (e.g., defrag. after a large number of deallocations).
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Overview: DynaSOAr Mem. Allocator [1]

● Always allocate in active (non-full) blocks.

● Objects of same type stored in blocks in SOA data layout.
[1] M. Springer, H. Masuhara. DynaSOAr: A Parallel Memory Allocator for Object-oriented Programming on GPUs with Efficient Memory Access.  ECOOP 2019.

Structure of Arrays (SOA):
SIMD/GPU best practice
for better vector access/

memory coalescing.

Structure of Arrays (SOA):
SIMD/GPU best practice
for better vector access/

memory coalescing.
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Block States

● free: Block is empty

● allocated [T]: Block contains at 
least  1 object of type T.

● active [T]: Block is allocated [T] 
and has at least 1 free slot.

● defrag [T]: Block is active [T] and 
is a defragmentation candidate
(block with low fill level).
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Block States

● free: Block is empty

● allocated [T]: Block contains at 
least  1 object of type T.

● active [T]: Block is allocated [T] 
and has at least 1 free slot.

● defrag [T]: Block is active [T] and 
is a defragmentation candidate
(block with low fill level).

new with CompactGpu
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Defragmentation Factor

● n is the problem-specific defragmentation factor that must be chosen at 
compile time.

– Consider only blocks of fill level ≤ n/(n+1) for defragmentation (defrag. candidates).

– Move objects from 1 source block into n target blocks.

– One defragmentation pass eliminates 1/(n+1) of all defragmentation candidates. Run 
multiple passes to eliminate all candidates.

– Example: n = 1: Merge 2 blocks of fill level ≤ 50%.

– Example: n = 2: Merge 3 blocks of fill level ≤ 66.6%.

– In each case, the source block is eliminated by defragmentation.

● Higher n → More defragmentation

● Lower n → Less defragmentation, but faster (less work)
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Block States
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Block States



06/23/2019 CompactGpu - ISMM 2019 18

Block State Bitmaps

● DynaSOAr/CompactGpu indexes states in block state bitmaps.

● Newly introduced with CompactGpu: defrag[T]
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Definition of Fragmentation

(considering only allocated[?] blocks)
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Definition of Fragmentation

(considering only allocated[?] blocks)

Guaranteed frag. level
after defrag.: ≤ 1/(n+1)

(Because all blocks with
fill level ≤ n/(n+1) are gone.)

Guaranteed frag. level
after defrag.: ≤ 1/(n+1)

(Because all blocks with
fill level ≤ n/(n+1) are gone.)
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Defragmentation: Step by Step
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Choose Source/Target Blocks

● Compact defrag[T] bitmap.
(exclusive prefix sum)

● Choose n target blocks for 
each source blocks.
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Defragmentation by Block Merging

● Copy objects from a source block to n target blocks (in parallel).

● Source block is empty (new state: free), reducing fragmentation.

● In-place defragmentation mechanism.
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Rewriting Pointers to Old Locations

● Store forwarding pointers in source blocks.

● Afterwards: Scan heap and find pointers to relocated objects. 
Rewrite those pointers.
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Rewriting Pointers to Old Locations

● Scan heap and look for anything that looks like a pointer.

● Rewrite if bid < R[r/n] and block is a defrag. candidate.

Condition 1: bid < 7 (i.e., source range)

Condition 2: defrag[Fish][bid] (i.e., defrag. cand.)
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Rewriting Pointers to Old Locations

● Scan heap and look for anything that looks like a pointer.

● Rewrite if bid < R[r/n] and block is a defrag. candidate.

Condition 1: bid < 7 (i.e., source range)

Condition 2: defrag[Fish][bid] (i.e., defrag. cand.)

● Defrag bitmap largely cached.
● 2 mem. reads + 1 write if pointer rewritten
● 1 mem. read otherwise

● Defrag bitmap largely cached.
● 2 mem. reads + 1 write if pointer rewritten
● 1 mem. read otherwise
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Benchmarks
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Benchmark: N-Body with Collisions

● Memory consumption drops faster.

● Performance improvement: 12%
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Benchmark: Generational Cellular Automaton

● Memory consumption drops faster.

– Too much defragmentation leads to overcompaction. 

● Performance improvement: 6%
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Conclusion
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Conclusion

● Efficient memory defragmentation is feasible on GPUs.

● Besides saving memory, defragmentation makes usage of 
allocated memory more efficient (better mem. coalescing).

● GPU memory allocation patterns allow us to implement 
defragmentation efficiently.

● Certain CPU technqiues (e.g., recomputing forwarding pointers 
on the fly [1]) do not pay off on GPUs.

[1] D. Abuaiadh, Y. Ossia, E. Petrank, U. Silbershtein. An Efficient Parallel Heap Compaction Algorithm. OOPSLA 2004
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Appendix: Microbenchmarks
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Achieved Fragmentation Level
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Number of Defragmentation Passes
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Number of Object Copies
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Benchmark: N-Body with Collisions

● Memory consumption drops faster.

● Performance improvement: 12%
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Benchmark: Generational Cellular Automaton

● Memory consumption drops faster.

– Too much defragmentation leads to overcompaction. 

● Performance improvement: 6%
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Reducing Heap Scan Area

● Allocator has detailed information about the structure of allocations.

● Only Cell has a pointer to Agent. Only look into allocated[Cell] blocks.
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Background: GPU Architecture

● 20 symmetric multiprocessors (SMs)

● 128 CUDA cores per SM

● Total: 20*128 = 2560 CUDA cores

● But in reality: 20*4 physical cores, 
each operating on 128-byte vector 
registers

Memory controller accesses memory 
in 128-byte blocks

Source: NVIDIA GeForce GTX 1080 Whitepaper

CUDA gives programmers the
illusion of having 2560 cores.

CUDA gives programmers the
illusion of having 2560 cores.
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