
CSE 202 Homework 4 Matthias Springer, A99500782 1

Problem 2

Basic Idea

• PERFECTASSEMBLY ∈ NP : a permutation P of si ∈ S is a certificate that can be checked in
polynomial time by ensuring that

⋃
P = S, and |P | = |S|, and for every consequtive pair pi, pi+1 in

P , pi[l + 1, 2l] ◦ pi+1[1, l] ∈ T 1.

• PERFECTASSEMBLY is NP-hard: HAMILTONIANPATH ≤P PERFECTASSEMBLY

– For every v ∈ V , generate a string vv in S.

– For every (u, v) ∈ E, generate a string uv in T .

– G = (V,E) has a hamiltonian path iff S has a perfect assembly with respect to T .

Proof: PERFECTASSEMBLY ∈ NP
• A certificate str is a string permutation of all si ∈ S, such that every consequtive pair (si, si+1) is

corroborated by a string in T .

• First, we check if str is in fact a permutation of S by checking if all consequtive substrings of lengths
2l are elements of S, if there are duplicates among these substrings, and ensure that the number of
the substrings equals |S|. This can be done in polynomial time by comparing every such substring
in str with each other (find duplicates) and finding every such string in S.

• Then, we check if every consequtive pair of substrings of length 2l in str is corraborated by a string
tk ∈ T . This is the case if, for two substrings si, si+1, si[l + 1, 2l] ◦ si+1[1, l] ∈ T .

Proof: PERFECTASSEMBLY is NP-hard

We show that HAMILTONIANPATH ≤P PERFECTASSEMBLY . We know that HAMILTONIANPATH
is NP-hard. We show how to generate an instance of PERFECTASSEMBLY and show that it has a so-
lution if and only if there exists a hamiltonian path.

Generate instance of PERFECTASSEMBLY

Given an instance of HAMILTONIANPATH with G = (V,E), we generate an instance of PERFECT
ASSEMBLY as follows.

• Σ = V , where Σ is the alphabet.

• S = {vv | v ∈ V }

• T = {uv | (u, v) ∈ E}

• l = 1

1◦ is string concatenation and str [a, b] denotes the substring from index a to b (inclusive) of str .

CSE 202 Homework 4 Matthias Springer, A99500782 2

HAMILTONIANPATH ⇒ PERFECTASSEMBLY

• Let G = (V,E) be a graph that contains a hamiltonian path with |V | = n.

• Then there is a sequence (i1, i2, . . . in), such that (vi1 , vi2 , . . . , vin) is a hamiltonian path.

• Then str = vi1vi1vi2vi2 . . . vinvin is a certificate that proves that S = {vi1vi1 , vi2vi2 , . . . , vinvin} is a
perfect assembly with respect to T , because str is a permutation of S (therefore, we visit every
vertex exactly once) and, for every consequtive pair vivivi+1vi+1, there must be an edge (vi, vi+1) ∈ E
(otherwise, this would not be a path in G at all).

PERFECTASSEMBLY ⇒ HAMILTONIANPATH

• Let G = (V,E) be a graph with |V | = n and let S be a perfect assembly with respect to T .

• Then, there must be a certificate str such that str is a permutation of S. Therefore, for str =
vi1vi1vi2vi2 . . . vinvin , P = (vi1 , vi2 , . . . , vin) is a permutation of V .

• P is a hamiltonian path because it visits every vertex exactly once and, for every consequtive pair
of vertices (vk, vk+1), there exists an edge (vk, vk+1) ∈ E, because every consequtive pair in str is
corroborated by a tj ∈ T , and all tj ∈ T represent edges in G by definition.

Complexity of Reduction

|Σ| = |S| = |V |, |T | = |E| = O(|V |2), l = 1, and |si| = 2 for every si ∈ S. Therefore, all quantities of
the generated instance are polynomial in the number of vertices |V | and the instance can be generated in
polynomial time.

Problem 5

Subproblem a: Solve in O(2n · p(n)) time

Basic Idea

• Solve with dynamic programming: Let HAM [S, s, t] be true iff there is a hamiltonian s-t path in
S ⊆ V .

• HAM [S, s, t] =
∨
k∈S HAM [S − {t}, s, k] ∧ (k, t) ∈ E

• Intuition: There is a hamiltonian path from s to t in S, if there is a hamiltonian path from s to some
k ∈ S in S − {t} and (k, t) ∈ E.

Dynamic Programming Table

• Base case for subsets of size one: ∀a1 ∈ V, a2 ∈ V, a3 ∈ V : HAM [{a1}, a2, a3] := a1 = a2 = a3

• ∀s ∈ V, t ∈ V, S ⊆ V, |S| > 1 : HAM [S, s, t] =
∨
k∈S HAM [S − {t}, s, k] ∧ (k, t) ∈ E

• We fill the table with increasing cardinalities of S, i.e. we first fill the table for all subsets S with
|S| = 2, then for all subsets S with |S| = 3, and so on. Notice, that, in the recursive definition, we
only use table entries with a subset S that has a smaller cardinality.

CSE 202 Homework 4 Matthias Springer, A99500782 3

Full Algorithm

• Fill the dynamic programming table for all base cases.

• Fill the dynamic programming table according to the recursive definition as described in the previous
section.

• Check all values HAM [V, a, b] for all a ∈ V, b ∈ V . If at least one of them is true, then there is a
hamiltonian path in the graph.

Space Complexity

The size of the table is 2|V | · |V | · |V |, so the space complexity is exponential in the number of vertices.

Runtime Complexity

• Filling the dynamic programming base cases: |V |3 entries.

• Filling the rest of the table according to the recursive definition: there are O(2|V | · |V |2) table entries
and for every entry we iterate over all k ∈ S, where |S| ≤ |V |. Therefore, this takes O(2|V | · |V |3) =
O(2|V | · p(|V |)) time.

• We scan the table for all a ∈ V, b ∈ B at HAM [S, a, b]. This takes O(|V |2) time.

• The overall runtime complexity is O(2|V | · |V |3).

Proof

We prove by induction over the size of |S| that algorithm is correct.

• Induction Base: Let S ⊆ V with |S| = 1. Then, there can be hamiltonian s-t path if and only if
s = t and S = {s}, because we only take a look at the subgraph with this single vertex. Therefore,
HAM [{a}, s, t] := a = s = t.

• Induction Hypothesis: Let HAM [S, s, t] = true if and only if there is a hamiltonian s-t path in S ⊆ V ,
for all |S| ≤ k.

• Induction Proof: We want to decide whether there is a hamiltonian s-t path in S ⊆ V with |S| = k+1.
A hamiltonian path is a sequence of vetices (v1, v2, . . . , vk+1). Such a hamiltonian path exists if and
only if a hamiltonian path (v1, v2, . . . , vk) exists in S − {vk+1} and there is an edge (vk, vk+1) ∈ E in
G. Therefore, HAM [S, s, t] =

∨
k∈S HAM [S − {t}, s, k] ∧ (k, t) ∈ E for |S| > 1. From the induction

hypothesis, we know the correct value of HAM [T, a, b] for a ∈ V, b ∈ V, T ⊆ V, |T | = k.

• A hamiltonian path can start and end at any vertex. Therefore, there is a hamiltonian path in G, iff
HAM [V, a, b] = true for at least one combination of a ∈ V, b ∈ V .

CSE 202 Homework 4 Matthias Springer, A99500782 4

Subproblem b: Solve in polynomial space

Basic Idea

• The basic idea relies on the concept of alternate addition/substraction from the lecture.

• We count the number of all paths (starting at v1 and ending at vn) of size |V | (that use |V |−1 edges)
in G = (V,E).

• A path of length |V | is not hamiltonian iff at least one vertex v was not visited. Therefore, for every
v ∈ V , we substract the number of paths of length |V | in G′ = (V − {v}, E ′), i.e. all paths that do
not visit v.

• Notice, that we substracted paths that miss two vertices twice. We can make up for this by adding
all pathes of size |V | that miss two vertices. But now we added paths that miss three vertices too
often. We keep adding and substracting in such a way.

• Counting all these pathes takes exponential time because we eventually have to examine all subsets
S ⊆ V for paths of size |V |. Notice, that we do not need a DP table here, resulting in polynomial
space complexity.

• We repeat this process for all possible start and end vertices.

Full Algorithm

We run the following algorithm for every pair s ∈ V, t ∈ V and return true if at least one run returns true.

counter ← 0
sign ← 1
for k ← |V | downto 1 do

for all S ⊆ V ∧ |S| = k do
counter ← counter + sign · countPaths((S,E ′), s, t)

end for
sign ← −sign

end for
return true iff counter > 0

The function countPaths((V,E), s, t) counts the number of all paths of length |V | in (V,E) that start
at s and end at t. This can be done with a modified version of BFS. Note, that it is allowed to visit vertices
and edges multiple times.

Proof

• countPaths((V,E), s, t) counts the number of s-t paths of size |V | − 1 in G = (V,E).

• Let missing[i] be the number of s-t paths in all graphs with i vertices missing from V . E.g. missing [1]
is the number of s-t paths in all graphs G = (V ′, E ′) with V ′ = V − {v} for every v ∈ V .

• A graph G = (V,E) contains a hamiltonian path if there is at least one s-t path for some s ∈ V, t ∈ V
where no vertex is missing in the path. We can determine the number of these paths by substracting
the number of paths in all graphs with one vertex missing from the number of paths in the graph with
no vertex missing. The number of these paths is missing [0]−missing [1]+missing [2]−missing [3]+. . ..
We have to use this alternating sum because we counted the number of paths with two vertices

CSE 202 Homework 4 Matthias Springer, A99500782 5

missing in the graphs multiple times in missing [2]. Then, again, we counted some paths multiple
times, yielding this alternating sum.

Finding all s-t paths of length |V | − 1

• We maintain an array counter[vi, d] that counts how often we encounter the vertex vi with a current
distance of d.

• At the beginning, counter[s, 0] = 1 and all other array slots are initialized to 0.

• We run BFS and maintain tuples of vertex v and current distance d in the queue.

• For every tuple (v, d), we traverse all outgoing edges (v, u) ∈ E and increase the counter for u at
distance d+ 1 by the counter for the current tuple counter[v, d].

• Note, that BFS traverses tuples (v, d) with increasing values of d, i.e. before a tuple (v, d′) with d′ > d
is processed, all tuples (u, d) have been processed. Therefore, we will never increase the counter for
an already processed tuple.

• counter [t, |V | − 1] contains the number of s-t paths of length |V | − 1.

counter [vi, d]← 0 ∀vi ∈ V, 0 ≤ d ≤ |V |
counter [s, 0]← 1
Q← new Queue
Q.add((s, 0))
while |Q| > 0 do

p = (v, d)← Q.pop()
for all (e = (v, u) ∈ E do

if d+ 1 < |V | ∧ (u, d+ 1) 6∈ Q then
Q.push((u, d+ 1))

end if
counter[u, d+ 1]← counter[u, d+ 1] + counter[v, d]

end for
end while

return counter [t, |V | − 1]

This algorithm fills |V | · (|V | − 1) = O(|V |2) array slots, and for every array slot (v, d), the algorithm
traverses all of v’s incident nodes u with (v, u) ∈ E. Therefore, the runtime complexity for this algorithm
is O(|V |2 · |E|) = O(|V |4). The space complexity is O(|V |2), i.e. the size of the array.

Runtime Complexity

• Generating all subsets S ⊆ V in the for loop: O(2|V |) total iterations.

• One run of countPaths per subset: O(2|V | · |V |4).

• Running the whole algorithm for all pairs of s ∈ V, t ∈ V : O(2|V | · |V |6).

CSE 202 Homework 4 Matthias Springer, A99500782 6

Space Complexity

• The space for the current subset S and the counter variable and the sign variable is constant.

• Every run of countPaths requires O(|V |2) temporary space, i.e. this space is only required during
one run of the function.

• The overall space complexity of the algorithm is O(|V |2).

Problem 3

Basic Idea

• The number of clauses must be equal to number of variables, because every variable must appear in
exactly 3 clauses.

• We build a flow network as illustrated above. Every variable can send a flow of 1 to its positive or
negative literal and every literal can satisfy clauses it appears in. We only allow it to satisfy one
clause. In fact, a literal could sometimes satisfy more than one clause, but we can always find an
assignment such that every variable satisfies exactly one clause2. The capacity constraints on the
edges leading to the sink t ensure that every clauses uses only one literal for satisfiability.

• There is a valid assignment of variables iff the max flow value is n. A variable is set to true if its
positive literal receives a flow of 1. Otherwise, it is false.

2According to Hall’s theorem. See proof for details.

CSE 202 Homework 4 Matthias Springer, A99500782 7

Flow Network Construction

• Add a source s and a sink t.

• For every variable xi, add a node vxi and two literal nodes lxi and l¬xi .

• Add edges (s, vxi) with a capacity of 1, and edges (vxi , lxi) and (vxi , l¬xi) with capcities of ∞.

• For every clause Ci, add a node vCi
.

• Add edges (vCi
, t) with a capacity of 1.

• If a is a literal and a ∈ Ci, add an edge (la, vCi
) with a capacity of ∞.

Algorithm

• Build the flow network for the problem instance.

• Run the Ford-Fulkerson algorithm to obtain a max flow.

• If a literal node lxi receives a flow of 1, set xi to true, otherwise set it to false.

Proof

• Integrality constraint: All flow capacities are integers. Therefore, the Ford-Fulkerson algorithm
generates an integer flow.

• Valid assignment: All variable nodes can send a flow of either 0 or 1 to one of the literals (due to
integrality). In case the max flow value is |Variables|, i.e. there is a perfect matching3, every variable
sends a flow of 1 to either its positive or negative literal. Therefore, the assignment is valid in a sense
that every variable has an assignment and there is no contradiction.

• Perfect matching

– According to Hall’s theorem, a bipartite graph G = ((Variables ,Clauses), E) has a matching of
size Variables , if and only if, for every S ⊆ Variables , |N(S)| ≥ |S|, where N(S) is the set of
vertices in Clauses that are reachable from S.

– In the graph, we have additional nodes for positive and negative literals for every variable. When
we think about a matching, we consider the variable nodes to be directly connected to the clause
nodes. This is does not change anything in the following argument.

– Let S ⊆ Variables . N(S) ≥ max{3, |S|}, because every variable appears in exacly 3 clauses.
Therefore, 3 is a lower bound for S 6= ∅. For |S| variables, we have 3|S| literals appearing

in some clauses. Since every clause has exaclty 3 literals, we need at least 3|S|
3

= |S| clauses.
Therefore, S is connected to at least |S| clauses.

– Therefore, there is always a matching of size Variables , i.e. there is always a perfect matching.
Therefore, this version of 3SAT is always satisfiable.

3We show below that this is always the case.

CSE 202 Homework 4 Matthias Springer, A99500782 8

Runtime Complexity

• Building the flow network: We create O(n) nodes for variables/literals and O(n) nodes for clauses,
since the number of clauses equals the number of variables. We add no more than O(n2) edges.

• The max flow can be calculated with the Edmonds-Karp algorithm in O(|V ||E|2) = O(n5).

• The overall runtime is O(n5). Therefore, the runtime complexity is polynomial in the number of
variables.

Problem 1

Basic Idea

• STEINER ∈ NP : a subset F ⊆ E of edges is a certificate that can be checked in polynomial time
by ensuring that |F | ≤ k and that, for an arbitrary edge (u, v) ∈ F , all nodes in V can be reached
from u. This can be done with DFS.

CSE 202 Homework 4 Matthias Springer, A99500782 9

• STEINER is NP-hard: SETCOVER ≤P STEINER

– For every element u ∈ U and every subset Si ∈ S , generate a vertex.

– Connect all subset vertices to a common root vertex and all elements to the subsets they are
included in.

– kSTEINER = kSETCOVER + |U |
– There is a set cover of at most kSETCOVER subsets iff there is a Graphical Steiner Tree with at

most kSTEINER edges.

Proof: STEINER ∈ NP
• A certificate is a subset F ⊆ E.

• First, we check if |F | ≤ k.

• Then, we check if the graph induced by F is contains all vertices and is connected. We take an
arbitrary edge (u, v) ∈ F and start a DFS on u. There is a Graphical Steiner Tree of at most size k
iff the DFS visits all v ∈ V . The DFS can maintain an array of already visited nodes and determine
whether all vertices were visited. DFS takes O(|V |+ |F |) = O(|V |+ |E|) time.

Proof: STEINER is NP-hard

We know that SETCOVER is NP-hard and show how to reduce it STEINER.

Graph Construction

We show how to generate a graph for the Graphical Steiner Tree problem from an instance of SETCOVER.
Let I = (U, S, k) be an instance of SETCOVER.

• Add a root vertex vr.

• For every element ui ∈ U , add a vertex vui .

• For every subset Si ∈ S, add a vertex vSi
.

• If ui ∈ Si, add an edge {vui , vSi
}.

• For every subset Si, add an edge {vr, vSi
}.

Generate instance of STEINER

• Build the graph according to the previous section.

• Set kSTEINER = kSETCOVER + |U |.

CSE 202 Homework 4 Matthias Springer, A99500782 10

SETCOVER ⇒ STEINER

• Let I = (U, S, k) be an instance of SETCOVER that has a set cover C = {Sa1 , Sa2 , . . . , Sak} of size
k.

• Then, the according Graphical Steiner Tree graph has the following Steiner Tree with k + |U | edges:
select all edges {vr, Sai} for all 1 ≤ i ≤ k (k edges). In adddition, select |U | edges {Sai , u} such that
all u ∈ U are covered. There must always be such edges, because C is a set cover, i.e. all u ∈ U are
contained in some sets Sai ∈ C.

STEINER ⇒ SETCOVER

• Let I = (U, S, k) be an instance of SETCOVER and F ⊆ E be a set of edges in the Graphical Steiner
Tree graph with |F | ≤ k + |U |.

• Then, all vertices vui are connected to vr in F . Since there are no connections among the vertices
vui , they must all be connected through some vertices vSi

. There cannot be more than k edges
{vr, vSi

} in use, because there are |U | edges needed for all vui and we have at most k + |U | edegs
in F . {Si | {vr, vSi

} ∈ F} is a set cover of size k, because, according to the graph construction,
there is an edge between a vertex vui and a subset vertex vSi

if and only if ui ∈ Si. Therefore,⋃
Si∈S:{vr,vSi

}∈F Si = U .

Complexity of Reduction

We generate O(|U | + |S|) nodes and no more than O((|U | + |S|)2) edges. Therefore, the reduction is
polynomial in the size of the SETCOVER instance.

Problem 4

Basic Idea

• Dynamic programming: CUT [T, d] is the maximum achievable cut value of subtree T , where the
difference between the partition set sizes is exactly d.

• P = {T, T1, T2}, where T1 is T ’s left child and T2 is T ’s right child4.

• CUT [T, d] = maxS⊆P{
∑

(a,b)∈S×P−S wa,b+max−n≤a1,a2≤n∧a1+a2=d−||P−S|−|S||){CUT [T1, a1]+CUT [T2, a2]}}

• For all leaves Li ∈ V : CUT [Li, 1] = 0 and for d 6= 1 : CUT [Li, d] = −∞.

• For every subtree T , it does not matter in which partition set T is. By swapping all nodes in set A
and set B, CUT stays the same. Therefore, ∀T ∈ V, d ∈ Z : CUT [T, d] = CUT [T,−d].

• For every tree, we decide which nodes P are in the same partition set. This decision contributes to
the partition size difference with a value of ||P | − |S||, i.e. the difference of the number of nodes of
P in A and in B. We must accumulate a difference in partition sizes in the child nodes T1 and T2 of
d− ||P | − |S||, i.e. the difference in partition sizes in T1 and T2 can be arbitrary as long as the total
difference in partition size is exactly d.

4As stated in the problem description, we only have binary trees.

CSE 202 Homework 4 Matthias Springer, A99500782 11

Full Algorithm

• The following code describes the function calculateCut(T) that fills the dynamic programming table
for all nodes in subtree T . This function fills the table in a DFS style. It calculates the values for
both children first and then calculates the value according to the formula.

if T1 = ∅ ∧ T2 = ∅ then
CUT [T, 1]← 0
CUT [T, d]← −∞∀d ∈ Z{1} : −|V | ≤ d ≤ |V |

else
if T1 6= ∅ then

calculateCut(T1)
else

T1 ← T∅
end if
if T2 6= ∅ then

calculateCut(T2)
else

T2 ← T∅
end if
for all d ∈ Z : −|V | ≤ d ≤ |V | do

CUT [T, d]← −∞
for all S ⊆ {T, T1, T2} do

r ←
∑

(a,b)∈S×({T,T1,T2}−S)wa,b
for all a1, a2 ∈ Z : −|V | ≤ a1, a2 ≤ |V | ∧ d = a1 + a2 + ||{T, T1, T2} − S| − |S|| do

v ← CUT [T1, a1] + CUT [T2, a2] + r
if v > CUT [T, d] then

CUT [T, d]← v
SOL[T, d]← (S, (T1, a1), (T2, a2))

end if
end for

end for
end for

end if

• Then, we invoke the algorithm as follows (R is the root of the tree).

CUT [T∅, 0]← 0
CUT [T∅, d]← −∞ ∀d ∈ Z : −|V | ≤ d ≤ |V |
calculateCut(R)
output(R ∈ A)
printSol(R, 0, A)

• This function printSol(T, d, side) prints the rest of the solution. It retrieves the path of decisions
that was made during the actual algorithm from the SOL table.

s← SOL[T, d]
S ← s[1]
T1 ← s[2][1]
a1 ← s[2][2]
T2 ← s[3][1]

CSE 202 Homework 4 Matthias Springer, A99500782 12

a2 ← s[3][2]
for all (Tc, ac) ∈ {(T1, a1), (T2, a2)} do

if Tc 6= T∅ then
if Ts ∈ S = T ∈ S then

output(Tc ∈ side)
printTable(Tc, ac, side)

else
otherSide ← A if side = B else B
output(Tc ∈ otherSide)
printTable(Tc, ac, otherSide)

end if
end if

end for

Proof

• Independent subproblems: For two trees T1 and T2, where T1 and T2 are not subtrees of each other,
an optimal solution for T1 is independent from an optimal solution for T2, since there are no edges
between T1 and T2.

• Optimal substructure: Given an optimal solution for all child nodes, the algorithm finds an optimal
solution for the whole subtree. We prove this by induction.

– Induction Base: If T is a leaf, i.e. it has no child nodes, then there are no edges involved at
all. Therefore, the cut value is always 0 and the difference between the sizes of the partition
sets must be 1, i.e. d = 1, because we only have one vertex that must be in one set. For other
values of d, the problem is infeasible. We denote this by a cut value of −∞, i.e. the algorithm
will never choose it unless the whole problem instance is infeasible.

– Induction Hypothesis: Assume that for a vertex T , we know the optimal solution for all −|V | ≤
d ≤ |V | for both the left and the right child vertex T1 and T2.

– Induction Proof: We find the optimal solution for a given value of d by evaluting all possible
solutions: we have to decide in which set we put T , T1 and T2

5 and think about the subtrees.
In fact, it is not important, in what exact set we put the vertices, since we are only interested
in the difference of size of the partition sets. To achieve a value of d, the difference in the left
subtree plus the difference (of partition set sizes) in the right subtree plus the difference of the
vertices T , T1 and T2 must equal d6. By evaluating all these possibilities, we can be sure to
find the optimal solution. We only have to consider values −|V | ≤ d ≤ |V |, the difference of
partition size sets cannot be greater than the number of vertices in total7.

Runtime Complexity

• We fill the DP table bottom up using DFS. Therefore, we visit each vertex and edge once: O(|V |+|E|).
5In the algorithm, we consider all possibilities to put these vertices in the set S or not. Actually, this is not necessary,

since the symmetric cases, where we switch the partition sets, have the same cut value and partition set size difference. But
it doesn’t hurt, either.

6Note, that it does not matter whether T1 and/or T2 put more vertices in set A or in set B, since both cases are completely
symmetric. We can always swap both sets.

7In fact, for most cases we will have a value of −∞ in the DP table for the lower vertices.

CSE 202 Homework 4 Matthias Springer, A99500782 13

• For every vertex, we examine all values of −|V | ≤ d ≤ |V |: O(|V |). For every value of d, we examine
all possibilities of taking subsets S of {T, T1, T2}: constant. For every subset S, we consider all
possibilites to achieve a value of d− ||P − S| − |S||: O(|V |2) possibilities of assigning a1 and a2. In
total, we consider O(|V |3) cases per vertex.

• For every case, we check two values in the DP table (constant time). The runtime complexity for
filling the whole table is O(|V |4).

• Printing the solution is done by visiting every vertex once with a DFS and examining one DP table
entry per vertex. The overall runtime complexity for the algorithm is O(|E|+ |V |4) = O(|V |4).

Problem 6

Subproblem a: Approximation Algorithm

Basic Idea

• Sort all visitors Vi by their value vi in a decreasing way.

• Greedy algorithm: Allocate the next visitor Vi to the the ad Aj that has currently the lowest sum.

Full Algorithm

sort V by value
for all Vi ∈ V do

minAd ← min1≤i≤mAi
add Vi to minAd

end for

Proof of Approximation Factor

• We assume that n ≥ m. Otherwise, at least one ad does not get any visitor. In that case, the
maximum spread is zero for both the optimal algorithm and the greedy algorithm.

• Let TOPT be the maximum spread that is generated by the optimal algorithm. TOPT ≤
∑n

i=1 vi
m

,
because in case all visitors are equally distributed, the minimum value sum is maximum.

• Let TG be the spread that is generated by the greedy algorithm. Let Al be the ad with the lowest
sum. We denote the sum of the ad Ai with vAi

.

– Al has the lowest sum: ∀1 ≤ i ≤ m : vAl
≤ vAi

.

– Let Lk be the last visitor allocated to Ak. ∀1 ≤ i ≤ m : vAl
≥ vAi

− vLi
. Otherwise, we would

have allocated Li to Al.

– In the formula above vAi
≥

∑n
i=1 vi
m

, because if this ad was below average, we would have selected

Al instead. vLi
≤

∑n
k=1 vk
2m

according to the problem description.

– Therefore, TG ≥
∑n

i=1 vi
m
−

∑n
i=1 vi
2m

=
∑n

i=1 vi
2m

.

• Therefore, TG ≥ TOPT

2
.

CSE 202 Homework 4 Matthias Springer, A99500782 14

Subproblem b

• m = 2

• Visitor values: {10, 8, 5, 4, 3}

• Optimal solution: 15 (A1 = {10, 5}, A2 = {4, 8, 3})

• Greedy algorithm output: 14 (A1 = {10, 4}, A2 = {8, 5, 4})

Problem 7

Subproblem a

• Let T be an arbitrary independent set in G and S be an independent set generated by the greedy
algorithm in G.

• Let v ∈ T be an arbitrary node in T ’s independent set.

– First case: v ∈ S: v is also part of S’s independent set. Nothing more to show.

– Second case: v 6∈ S: v must have been eliminated during the run of the greedy algorithm.
Otherwise, we would have chosen it eventually. A node is elimated if and only if it is chosen
to be part of S (this cannot happen since v 6∈ S) or a neighbor u was chosen. In that case,
all of u’s neighbors including v were eliminated. Therefore, a neighbor u was chosen before v.
Therefore, w(u) ≥ w(v), since the greedy algorithm selects vertices with decreasing weights, and
(v, u) ∈ E, since u and v are neighbors. �

Subproblem b

• Let V be the set of vertices and (v1, v2, . . . , vn) be the sorted sequence of vertices, i.e. w(vi) > w(vj)
if i < j.

• Let TOPT be the value of the optimal solution. TOPT ≤
∑n

2
i=1 vi, because the optimal independent

set cannot contain more than n
2

vertices. In the best case, we select every other vertex in every row,
starting with a selected vertex in even/odd rows and with an unselcted vertex in an odd/even row.
For example, for select the first, third, fifth, ... vertex in the first row, select the second, fourth, sixth,
... vertex in the second row, and so on. In the best case, we also select the first n

2
biggest vertices.

• Let TG be the value of the solution of the greedy algorithm. TG ≥
∑n

5
i=1 v5i−4, because, in the worst

case, every vertex that we choose eliminates four other vertices. Therefore, we only select one out of
five vertices. In the worst case, we also eliminate the next four best vertices by selecting the currently
best free vertex. I.e. we select the first best vertex, then the sixth best vertex (because we eliminated
the second to fifth best vertex), then the eleventh best vertex, and so on.

• Need to show: TG ≥ 1
4
TOPT , i.e. TG

TOPT
≥ 1

4

CSE 202 Homework 4 Matthias Springer, A99500782 15

Problem 8

Basic Idea

• Replace all weights by wi by rounded values w′i = bwi

w
c with w = εW

n
, where W is the capacity of the

bag and n is the number of elements.

• Solve KNAPSACK with dynamic programming for the rounded values.

– KNAPSACK [i, j] is the maximum achievable value for elements with index e with 1 ≤ e ≤ i
and a bag capacity of j.

– KNAPSACK [i, j] = max{KNAPSACK [i−1, j−w′i]+vi,KNAPSACK [i−1, j]}. It is not allowed
to exceed the weight constraint, see next section for detailed formula.

• For the rounded version of the problem, we are interested in a bag of capacity W ′ = dW
w
e = dn

ε
e.

• For a fixed ε > 0, the size of the DP table and therefore the runtime complexity is then independent
of W and polynomial in the problem instance size. The DP table has a size of O(n · n

ε
).

Recursive DP Definition

• Let W ′ be the rounded capacity of the bag, vi be the value of item i, and w′i be the rounded weight
of item i.

• KNAPSACK [0, j] = 0

• KNAPSACK [i, j] = max{KNAPSACK [i− 1, j − w′i] + vi if j − w′i ≥ 0,KNAPSACK [i− 1, j]}

Full Algorithm

• Let w = εW
n

.

• Let W ′ = dW
w
e.

• Let w′i = bwi

w
c.

• Fill the DP table according to the recursive definition, starting with i = 1 and increasing values of i.
For every pair (i, j), store the chosen path, i.e. whether to include item i or not, in a separate array
SOL to be able to recover the solution later.

• KNAPSACK [n][W ′] contains the maximum achievable value for a bag of size W ′ and all items. We
trace back the solution through SOL and output all items that were taken.

Proof (attempt, not completed8)

• Capacity constraint: We calculated KNAPSACK for rounded values and W ′ = dn
ε
e. In the original

problem, this corresponds to a bag of size bigger than W , since we rounded W ′ up and w′i down.
Need to show that this rounding leads to a bag of size no larger than (1 + ε)W , in comparison to the
original bag size with the original item weights.

8I am not sure whether this approach turns out to be correct. Am I at least on the right way?

CSE 202 Homework 4 Matthias Springer, A99500782 16

• Value constraint: Since we rounded weights down and the bag size up, it might now be possible to
achieve a better value for the bag. We can be sure, that the solution will be at least as good as
optimal solution for the original KNAPSACK , in case we take all items that we would have taken
for the original KANPSACK . In that case, the value corresponds to the optimal value in the original
problem, and the capacity constraint of the bag is satisfied, since we only made items lighter (due to
rounding down) and the bag capacity bigger (due to rounding up). Therefore, VA ≥ VOPT , where VA
is the value of the bag calculated by this algorithm and VOPT is the value of the optimal solution in
the original KNAPSACK problem.

• This algorithm works for all given values of V and W : let W be the size of the bag. V cannot be
better than the optimal solution for that bag size, i.e. V ≤ VOPT ≤ VA.

Runtime Complexity

The weights can be adapted in O(n), where n is the number of items. The DP table size is O(n
2

ε
), and

for every table entry we inspect two other table entries. Therefore, the runtime for caluclating the table
is O(n

2

ε
). The solution can be extracted by inspecting n entries in the SOL table. Therefore, the overall

runtime complexity is O(n
2

ε
).

