
Database Analytics in Social Networks

Database Analytics (CSE 190), Project

Jay Ceballos (A09338030) Matthias Springer (A99500782)

March 22, 2014

1 Analytic Queries on Single Node

In this section, we present our implementation of the Social190 database and certain optimizations.

1.1 Database Schema

1CREATE TABLE members (

2id integer PRIMARY KEY ,

3name varchar (255) ,

4nation varchar (255),

5birthday date ,

6created timestamp

7);

8

9CREATE TABLE topics (

10id integer PRIMARY KEY ,

11name varchar (255)

12);

13

14CREATE TABLE posts (

15id integer PRIMARY KEY ,

16author integer references members(id),

17title varchar (255) ,

18text varchar (255) ,

19topic integer references topics(id),

20created timestamp

21);

22

23-- friend relationship is symmetric

24CREATE TABLE friends (

25x integer references members(id),

26y integer references members(id),

27created timestamp

28);

29

30CREATE TABLE viewed (

31reader integer references members(id),

32post integer references posts(id)

33);

1

CSE 190, Final Project Jay Ceballos, Matthias Springer 2

• members stores data about registered members of Social190.

• topics are used for posts. Every post has to be associated to a topic.

• Members can create posts about certain topics. These posts are stored in posts.

• Members can be friends with other members. The friend relationship is symmetric, i.e. if x is a friend
of y, then y is also a friend of x. We store the friend relationship in friends. Every time we add a
friendship, two tuples are added to the table.

• Posts can be viewed by friends of the poster. This is captured in posts. The table may contain a tuple
(r, p) only if p’s author is a friend of r.

1.2 Unoptimized Queries

In this section we describe two kinds of analytic queries that are executed on the database.

Query 1: view ratio of friend’s posts by friend Given a member r, for every friend a, report a tuple
(a, r, v) where v is the ration of the number of posts by a that are read by r, divided by the total number of
posts by a. We execute this query by first calculating the number of posts of a (denominator), and the number
of read posts of a by r (numerator), and dividing both numbers.

1SELECT (1.0 * numerator.cnt / denominator.cnt) AS v, numerator.author as a, numerator.

reader as r

2FROM (SELECT posts.author AS author , viewed.reader AS reader , COUNT (*) AS cnt

3FROM posts , viewed

4WHERE posts.id = viewed.post AND viewed.reader = 504

5GROUP BY posts.author , viewed.reader) AS numerator ,

6(SELECT posts.author AS author , COUNT (*) AS cnt

7FROM posts

8GROUP BY posts.author) AS denominator

9WHERE numerator.author = denominator.author;

Query 2: view ration of friends’ posts from nation by friend Given a member r, for every nation n,
report a tuple (n, r, v) where v is the ratio of the number of posts read by r that have been posted by friends
from nation n, divided by the total number of messages posted from friends from nation n in the newsfeed
of r.

This query is similar to Query 1, but takes into account a bigger number of friends instead of just one
single friend. We execute the query by first calculating the number of posts of all friends grouped by nation
(denominator), and the number of posts of these friends that were read by r, and dividing both numbers.

1SELECT (1.0 * numerator.cnt / denominator.cnt) AS v, numerator.nation as n, numerator.

reader as r

2FROM (SELECT members.nation AS nation , viewed.reader AS reader , COUNT (*) AS cnt

3FROM posts , viewed , members

4WHERE posts.id = viewed.post AND viewed.reader = 504 AND members.id = posts.

author

5GROUP BY members.nation , viewed.reader) AS numerator ,

6(SELECT members.nation AS nation , COUNT (*) AS cnt

7FROM posts , members , friends

8WHERE posts.author = members.id AND friends.x = 504 AND friends.y = members.id

9GROUP BY members.nation) AS denominator

10WHERE numerator.nation = denominator.nation;

CSE 190, Final Project Jay Ceballos, Matthias Springer 3

1.3 Table Index Optimization

In this section, we present indices that improved the performance of these two queries. In general, hash indices
turned out to be faster than B+ tree indices in most cases, because hash indices perform better for random
accesses, whereas B+ are better for range queries.

Indices for both queries

• CREATE INDEX ON viewed using hash (reader);

In both queries, we select tuples σreader=504 viewed, therefore we create a hash index for that attribute.
After selecting one or multiple tuples of that table, viewed .posts is fixed.

• CREATE INDEX ON posts using hash (id);

Both queries join posts ./posts.id=viewed .post viewed, where viewed .posts is fixed.

• CREATE INDEX ON posts using btree (author);

In Query 1, we group by authors in the two inner queries, therefore an index on this attribute might
be useful. In Query 2, in the second inner query, we select on posts .author , after joining friends ./
members ./members.id=posts.author posts, where members .id is fixed1.

Query 2-specific indices

• CREATE INDEX ON members using hash (nation);

In both inner queries, we group by nation, therefore an index on that attribute might be useful.

• CREATE INDEX ON members using hash (id);

In the first inner query, we join viewed ./ posts ./posts.author=members.id members, where posts .author is
fixed2. The same applies for another join in the second inner query.

• CREATE INDEX ON friends using hash (x);

In the second inner query, we select all friends with a certain attribute x.

1.4 PostgreSQL Materialized Views

PostgreSQL supports materialized views that cache the result of a query. However, they need to be refreshed
manually. In order to have the most recent data all the time, we triggered a refresh of the materialized views
after every insertion in one of the tables. However, this causes the whole view to be regenereated completely,
even though only few tuples might have changed. Queries, on the other hand, performed significantly better.
We did not investigate the use of materialized views any further in this project.

1.5 Incremental Views

In this section, we present our implementation of materialized views that are updated incrementally, i.e. not
the whole view is being regenerated but only the tuples that actually change. Specifically, we assume that
the materialized view is in a consistent state before an update/insert is issued. We make sure, that after the
operation, the materialized view is again in a consistent state.

1friend .x is given, fixing friend .y , therefore also fixing members.id after the first join.
2We fix posts.author after joining viewed ./ posts, where the join attribute of viewed is fixed.

CSE 190, Final Project Jay Ceballos, Matthias Springer 4

1.5.1 Database Schema

1CREATE TABLE ivm_arv (

2author integer ,

3reader integer ,

4numerator integer ,

5denominator integer

6);

7

8CREATE TABLE ivm_nrv (

9nation varchar (255),

10reader integer ,

11numerator integer ,

12denominator integer

13);

We use ivm_arv for Query 1 and ivm_nrv for Query 2. In both cases, we store the numerator and the denominator
instead of the divided value (average), in order to allow for incremental view updates, since average is not an
associative function but sum is.

1.5.2 Queries

1SELECT author AS a, numerator * 1.0 / denominator AS v, reader AS r FROM ivm_arv WHERE

reader = 504;

1SELECT nation AS n, numerator * 1.0 / denominator AS v, reader AS r FROM ivm_nrv WHERE

reader = 504;

For both queries, we simply select the single tuple that already contains the precomputed result from the
IVM table and calculate the division.

1.5.3 Incremental View Maintenance (Triggers): Query 1

For the incremental view maintenance, we basically have to consider four kinds of insertions: insertions into
views, members, posts, and friends. However, we do not need a trigger for inserting tuples into friends or
members for Query 1.

Insert into viewed We first handle the case where we insert tuples into viewed.

1CREATE OR REPLACE FUNCTION f_insert_view () RETURNS trigger AS

2f_insert_view

3DECLARE

4num_posts INTEGER;

5author_index INTEGER;

6BEGIN

7author_index := (SELECT posts.author FROM posts WHERE posts.id = NEW.post);

8

9UPDATE ivm_arv

10SET numerator = numerator + 1

11WHERE reader = NEW.reader AND author = author_index;

12IF NOT FOUND

CSE 190, Final Project Jay Ceballos, Matthias Springer 5

13num_posts := (SELECT COUNT (*) FROM posts WHERE author = author_index);

14INSERT INTO ivm_arv

15VALUES (author_index , NEW.reader , 1, num_posts);

16END IF;

17

18RETURN NEW;

19END;

20f_insert_view

21LANGUAGE plpgsql;

22

23CREATE TRIGGER insert_view AFTER INSERT ON viewed FOR EACH ROW EXECUTE PROCEDURE

f_insert_view ();

The following list describes the steps for the trigger.

• A tuple (r, p) is inserted into viewed.

• Increment the numerator of the tuple in the IVM table for that author and that reader. If no such tuple
exists, insert a new one with the number of posts of that author.

Insert into posts In case we insert a tuple into posts, we execute the following trigger. We simply increase
the denominator for every tuple of the author that created the post, because every reader has now one more
post to read.

1CREATE OR REPLACE FUNCTION f_insert_posts () RETURNS trigger AS

2f_insert_posts

3BEGIN

4UPDATE ivm_arv

5SET denominator = denominator + 1

6WHERE author = NEW.author;

7

8RETURN NEW;

9END;

10f_insert_posts

11LANGUAGE plpgsql;

12

13CREATE TRIGGER insert_posts AFTER INSERT ON posts FOR EACH ROW EXECUTE PROCEDURE

f_insert_posts ();

1.5.4 Incremental View Maintenance (Triggers): Query 2

For Query 2, we need triggers for inserting tuples into viewed, friends, and posts.

Insert into viewed In case we insert a tuple (r, p) into viewed, we first check whether there is a tuple for the
reader r and the nation of p’s author in the IVM table. If that is the case, we update the numerator for that
tuple by 1. Otherwise, we have to insert a tuple and calculate the number of posts by all friends of r who
have the nation of p’s author first.

CSE 190, Final Project Jay Ceballos, Matthias Springer 6

1CREATE OR REPLACE FUNCTION f_insert_view () RETURNS trigger AS

2f_insert_view

3DECLARE

4num_posts_nation INTEGER;

5view_nation VARCHAR (255);

6BEGIN

7

8UPDATE ivm_nrv

9SET numerator = numerator + 1

10FROM posts , members

11WHERE reader = NEW.reader AND ivm_nrv.nation = members.nation AND members

.id = posts.author AND NEW.post = posts.id;

12

13IF NOT FOUND THEN

14view_nation := (SELECT nation FROM members , posts WHERE posts.author =

members.id AND posts.id = NEW.post);

15num_posts_nation := (SELECT COUNT (*) FROM members , posts , friends WHERE

members.id = friends.x AND friends.y = NEW.reader AND posts.author =

members.id AND members.nation = view_nation);

16

17INSERT INTO ivm_nrv

18VALUES (view_nation , NEW.reader , 1, num_posts_nation);

19END IF;

20

21RETURN NEW;

22END;

23f_insert_view

24LANGUAGE plpgsql;

25

26CREATE TRIGGER insert_view AFTER INSERT ON viewed FOR EACH ROW EXECUTE PROCEDURE

f_insert_view ();

Insert into friends In contrast to Query 1, we have to update the IVM table if we insert tuples into the
friends table. In that case, a member’s read ratio for a given nation changes when we add a friend who has
already some posts: in that case, the number of posts that he could have read increases.

We update the IVM table by first getting the new friend’s nation and his posts and then updating the
IVM table for that nation by increasing the denumerator. Note, that this happens only if there is already
such a tuple in the IVM table, i.e. we do not create null tuples with this approach.

1CREATE OR REPLACE FUNCTION f_insert_friends () RETURNS trigger AS

2$f_insert_friends$

3DECLARE

4num_posts INTEGER;

5friend_nation VARCHAR (255);

6BEGIN

7num_posts := (SELECT COUNT (*) FROM posts WHERE author = NEW.x);

8friend_nation := (SELECT nation FROM members WHERE id = NEW.x);

9

10UPDATE ivm_nrv

11SET denominator = denominator + num_posts

12WHERE nation = friend_nation AND reader = NEW.y;

13

14RETURN NEW;

15END;

16$f_insert_friends$

CSE 190, Final Project Jay Ceballos, Matthias Springer 7

17LANGUAGE plpgsql;

18

19CREATE TRIGGER insert_friends AFTER INSERT ON friends FOR EACH ROW EXECUTE PROCEDURE

f_insert_friends ();

Insert into posts Similarly to Query 1, we might have to increment the denominator of some IVM tuples.
We iterate over all friends of the post’s author and increase their tuples’ denominator for the author’s nation
by one, if it exists.

1CREATE OR REPLACE FUNCTION f_insert_posts () RETURNS trigger

2AS f_insert_posts

3DECLARE

4author_nation VARCHAR (255);

5friend_id INTEGER;

6BEGIN

7author_nation = (SELECT nation FROM members WHERE NEW.author = members.id);

8

9FOR friend_id IN (SELECT members.id FROM members , friends WHERE members.id =

friends.x AND friends.y = NEW.author)

10LOOP

11UPDATE ivm_nrv

12SET denominator = denominator + 1

13WHERE nation = author_nation AND reader = friend_id;

14END LOOP;

15

16RETURN NEW;

17END;

18f_insert_posts

19LANGUAGE plpgsql;

20

21CREATE TRIGGER insert_posts AFTER INSERT ON posts FOR EACH ROW EXECUTE PROCEDURE

f_insert_posts ();

Remarks All the triggers that we presented in this section do only generate tuples in the IVM table if
the reader has actually read a post by that author/nation. This is in accordance with the suggestion in the
problem description not to generate NULL tuples in the IVM table.

In a later section, we present another way of maintaining IVM tables that includes generating NULL tuples
and we argue that there are workloads where this approach might turn out to be more efficient in terms of
runtime performance.

1.5.5 Incremental Views with Indices

In this section, we present indices that improved the performance of our implementation.

CSE 190, Final Project Jay Ceballos, Matthias Springer 8

Indices for both queries

• CREATE INDEX ON posts using hash (id);

In both queries, we can utilize this index when selecting the post for a given ID (σid=NEW .post posts)
after inserting a tuple into viewed.

• CREATE INDEX ON posts using btree (author);

In Query 1, we can utilize this index when retrieving the number of posts of a specific author after
inserting a tuple into viewed. This involves the selection σauthor=... posts. The trigger for inserting into
viewed in Query 2 contains a join members ./members.id=posts.author posts, where members .id is fixed.

Query 2-specific indices

• CREATE INDEX ON friends using hash (y);

When inserting a tuple into viewed, we can utilize this index in the trigger when we get the number of
posts by friends from a specific nation, since the subquery contains a selection σy=... friends.

• CREATE INDEX ON members using hash (id);

When inserting a tuple into viewed, we can utilize this index in the trigger when we get the nation for
a post, because the subquery contains a join members ./members.id=posts.author posts, where posts .author is
fixed.

• CREATE INDEX ON members using btree (nation);

When inserting a tuple into viewed, we can utilize this index in the trigger when we count the number
of posts by a specific nation, because the subquery contains the selection σnation=...members. Although,
the members are fixed at this point, this might allow for a more efficent query processing based on
generating the intersection of the tuples found so far with the result of index querying.

Trivial IVM indices The indices shown so far increase the speed of IVM updates. In addition, we added
indices on the attributes that are used for querying the IVM tables (and to some degree also during IVM
updates). This mainly increased the performance of the queries.

• CREATE INDEX ON ivm_arv using hash (reader);

• CREATE INDEX ON ivm_arv using hash (author);

• CREATE INDEX ON ivm_nrv using hash (reader);

• CREATE INDEX ON ivm_nrv using hash (nation);

1.6 Performance Evaluation

The following table shows the performance of our implementation without and with indices, and with and
without IVM. Every number represents the runtime of the fastest out of 3 runs with PostgreSQL 9.3 on an
Intel i7 2.8 GHz Notebook with 16 GB RAM.

Type INS INS INS INS Query 1 Query 2 INS Query 1 Query 2
members friends posts views Mix Mix Mix

unoptimized 3.008 6.121 2.700 2.949 33.817 31.390 9.285 30.962 24.562
indices 3.180 6.652 3.099 3.297 31.599 10.985 10.426 26.176 11.931
IVM 3.550 9.144 18.787 45.118 9.560 9.439 44.644 6.916 6.246
IVM + indices 3.546 9.290 16.291 8.091 3.265 3.254 27.042 3.357 3.333

CSE 190, Final Project Jay Ceballos, Matthias Springer 9

We can see that the performance for the IVM maintenance after inserting tuples into posts is bad, even
after applying indices. We try to address this issue in the next section.

We ran two types of benchmarks. The columns INS . . . are insertions of a lot of tuples of that type
(sequentially). We started with an empty database, inserted 10000 members, then 10000 friends, then 15000
topics, then 7500 posts, then 10000 views. The numbers are the runtime of the execution of the SQL script
in seconds. We ran all scripts 3 times and took the minimum value.

The column INS Mix denotes insertions of 25000 tuples into different tables, independently at random.
We inserted members with a probablity of 0.1, friends with 0.2, topics with 0.05, posts with 0.25, and views
with 0.4. Afterwards, we executed 10000 different instances of Query 1 and Query 2 sequentially (Query
1/2 Mix).

The row unoptimized is an unoptimized version without IVM or triggers. The row indices is a version
without IVM but with triggers. The row IVM (+indices) is an IVM version (with indices). It is surprising
that Query 1 with indices is slower than Query 2 with indices. We double checked our results and made sure
that we used as many triggers for Query 1 as possible: the query execution plan for Query 1 uses index scans
instead of sequential scans. We can also rule out a measuring error, since the runtime is big enough and
measuring jitter is usually in the area of less than half a second.

1.7 Deferred Updates of Incremental Views

In this section, we present ideas for increasing the performance of IVM maintenance after inserting tuples
into one of the four tables. The idea is to defer updates of materialized views by storing tuples in separate
tables (temp tables) and accounting for them when running the queries in a special way. Only when the temp
tables reach a certain size, the tuples are merged into the IVM tables.

Query 1 Consider a single insertion into posts. Since there may be multiple readers in ivm_arv for the post’s
author, we might have to update a lot of tuples, even if we insert only one tuple into posts3. We can optimize
the trigger as follows.

• Create a table posts_temp(author , new posts).

• When we insert a tuple into posts, increment new posts in posts_temp or create a new tuple with value
1 for that author if none exists (trigger).

• When posts_temp reaches n tuples, write back the changes to ivm_arv, using code from f_insert_posts.
However, increase the denominator by num posts instead of 1. Clear the table posts_temp.

• Query 1 needs to account for tuples in posts_temp by adding the number of posts of an author to the
denominator4.

We think that creating further temp tables for the other triggers is not useful for the following reasons.

• There is no trigger for members or friends at all.

• Inserts into viewed are already quite fast due to indices. Since we cannot perform better than the
unoptimized version, there is not much space to improve.

• Updates into viewed trigger an increment of only one tuple in the IVM table. Adding a tuple to a temp
table is not much faster than updating the numerator value of a single IVM tuple, considering that we
have indices on the attributes of the IVM table.

3This corresponds to the idea that we have to increase the denominator of tuples for all friends who have one more post they
can read now.

4The SQL code could be similar to this: SELECT author AS a, numerator / (denominator + (SELECT counter FROM

posts_temp WHERE author = a))AS v, reader AS r FROM ivm_arv WHERE reader = 8937;

CSE 190, Final Project Jay Ceballos, Matthias Springer 10

Query 2 For this query, the same optimization on posts_temp can be applied. Similarly to Query 1, it does
not pay off to add a temp table for viewed, because only one value is being incremented when inserting a
tuple. Query 2 has an additional trigger for updating friends. However, an insertion into friends triggers
only one update in the IVM table. Therefore, it does not pay off to generate a temps table.

Note, that if we consider the IVM of Query 1 and Query 2 at the same time, an insertion into viewed

triggers an update of a value in both IVM tables. From that point of view, a single insertion might be faster
than two updates.

1.8 Generating NULL tuples

The solution presented in the previous sections does not generate NULL tuples, i.e. we do not add a tuple
for readers that have read 0% of the posts. Considering the typical workload of a social network it might,
however, pay off to generate NULL tuples.

• We claim that in a social network, there are usually many more insertions into viewed than into any of
the other tables.

• Note, that the triggers for inserting into viewed are quite complex. In particular, they contain a check
whether a certain tuple exists or not. If we generate NULL tuples when inserting tuples into the other
tables, we can get rid of these checks, making insertions into viewed faster, but the other insertions
slower. For a typical workload, a large number of operations (inserts into viewed) becomes a little bit
faster, whereas a small number of operations becomes slower.

• For example, when inserting a friend, we have to insert a new tuple for (x, y) into the IVM table for
Query 1. In the query code we have to check for NULL values, though, otherwise we might get a
division-by-zero exception, in case one the of the friends has no posts yet.

• This approach might increase the performance by a very small factor. However, it wastes a lot of space,
because we insert a lot of tuples that we do not actually need, i.e. NULL tuples.

1.9 Further Optimizations

The triggers for both Query 1 and Query 2 involve operations that count the number of posts by an author or
a nation. For Query 1, we tried optimizing this operation by storing the number of posts per author in another
table and reusing that value instead of counting the posts every time we insert a new tuple into the IVM
table. However, it turned out that this optimization did not increase the performance of our implementation
because we had already an index on posts .author which is good enough for counting, since we do not actually
have to take a look at the tuples themselves.

For Query 2, it might pay off to cache the number of posts per nation and member, since this calculation
involves two joins. However, consider, that this slows down insertions into posts and requires additional space
that is proportional to the number of members and the number of nations.

2 Parallel Programming

In this section, we analyze slightly modified versions of Query 1 and Query 2. We do not want to output the
result for a single member r, but for every member r.

2.1 Data Partitioning

In this section, we present strategies to partition the tables presented in the last section onto n nodes.

CSE 190, Final Project Jay Ceballos, Matthias Springer 11

2.1.1 Query 1: Partition by Author

We propose a partitioning of members in a round-robin way, and a derived partitioning of the other tables,
resulting in no communication overhead at all.

• Distribute members round-robin.

• Store a post on the node of the associated member, i.e. on the node where post .author = members .id .

• Store views on the node of the associated post’s author, i.e. on the node where view .post .author =
members .id .

• We do not care about friends or topics for Query 1 at all, since these tables are not needed for answering
this query.

• Query 1 can be answered locally by executing the exact same query that we presented in the previous
section for every author a and every reader r on a’s node. Note, that we store all views and posts that
are associated with an author on the author’s node. Therefore, no communication is necessary.

• This approach does not imply any replication.

2.1.2 Query 2: Partition by Nation

We propose a partitioning of members according to the nation, as described in the following.

• Store all members of a given nation on a designated node, i.e. partition by nation. A single node can
hold members for multiple nations.

• Store a post on the node of the associated member, i.e. on the node where post .author = members .id .

• Store views on the node of the associated post’s author, i.e. on the node where view .post .author =
members .id .

• Store the part of the friends table on a node, where friends .x = members .id .

• We do not care about the topics table for Query 2.

• Query 2 can be answered locally by executing the exact same query that we presented in the previous
section, for all nations nat and every reader r on nat ’s node. Note, that we store all views and posts
that are associated with a nation on the nation’s node. We also store friends of members of that nation
on that node (only the friends table). Therefore, no communication is necessary.

• At first glace, it seems as if the friends table is being replicated. However, note that friends is symmetric
and even in the previous section we had two tuples for every friendship. Since we only store tuples based
on attribute y, no data is actually replicated.

• This approach is susceptible to skew. We can try to avoid skew by gathering histrograms/statistics
about the distribution of the members by nation before doing the partitioning. We should try to keep
the number of members per node constant. For example, a good partitioning might put members from
China on a single node and put members from Europe on another node. However, there might still be
many more members on the node for China than on any other node.

• This approach does not scale. Scaling is limited by the number of nations, because all members from
one nation have to be stored on one single node.

CSE 190, Final Project Jay Ceballos, Matthias Springer 12

2.1.3 Query 2: Partition by Author

We propose an alternative scheme of partitioning members in a round-robin way.

• Distribute members round-robin.

• Store a post on the node of the associated member, i.e. on the node where post .author = members .id .

• Store views on the node of the associated post’s author, i.e. on the node where view .post .author =
members .id .

• Store the part of the friends table on a node, where friends .x = members .id .

• We do not care about the topics table for Query 2.

• For executing Query 2, we need to send some data around. We evaluate two different execution schemes
here.

1. Send to designated node, grouped by nation
On every node, for every distinct reader, we count the number of views of posts of friends (note
that we have that portion of the friends table on that node) grouped by nation. For every author,
we also count the number of posts, grouped by nation. This results in a list of values: multiple
values for a lot of readers and nations, and a some values for all authors. We send the list to a
designated node for that nation, e.g. by hashing nation. On the target node, we sum the number
of posts per member and the number of reads of posts of friends from a given nation per member.
Note, that at this point, we have all data concerning a specific nation on a single node, and we can
apply the techinque shown in the previous section. Note, that scaling is limited by the number of
nations (reducers).

2. Send to designated node, grouped by reader
Apply the same technique as shown before, but, instead of having a designated node per nation,
have a designated node per reader. This turns out to be a bad idea, because we have to send the
number of posts of every member to every node, that will have a friend of the author. Note, that in
the first approach, we sent that number only to the node for that nation. However, this approach
might scale better since less data is sent to a single node. We do not evaluate this approach any
further.

• Note, that the second idea is less susceptible to skew and scales better. However, it requires some
communication.

2.2 Map-Reduce Implementation

In this section, we present Map-Reduce implementations that are based on the data partitioning shown in
the previous section.

2.2.1 Query 1

1map(key , value):

2for each member.id in members:

3num_posts = SELECT COUNT (*) FROM posts WHERE author = member.id

4

5for each (SELECT distinct(viewed.reader) FROM viewed , posts WHERE viewed.post =

posts.id AND posts.author = member.id):

6EmitIntermediate ((member.id , viewed.reader), (1, num_posts))

CSE 190, Final Project Jay Ceballos, Matthias Springer 13

7

8reduce ((author , reader), Iterator values):

9EmitTuple(author , reader , values.size() / values [0]. second)

The Map-Reduce code for this query is trivial. In fact, we do not need Map-Reduce to execute this query
efficiently if we assume that the data is partitioned as described in the previous section.

In the mapper, we do not need key and value. We just iterate over all authors and get their number of
posts. Then we iterate over all readers of posts of that author and emit a tuple. We have a reducer for every
author-reader pair that just generates the sum, divides the numerator and the denominator, and outputs the
tuple. In fact, we could already calculate the sum in by using the count keyword in the mapper or inside a
combiner and let the reducer just output the result, to be more efficient.

2.2.2 Query 2

We assume that the data is partitioned according to the author’s nation, as discussed in Section 2.1.2.

1map(key , value):

2for each reader in (SELECT distinct(viewed.reader) FROM viewed):

3for each x in (SELECT x FROM friends WHERE y = reader):

4num_posts = (SELECT COUNT (*) FROM posts WHERE author = x)

5num_read = (SELECT COUNT (*) FROM viewed , posts WHERE viewed.post = posts.

id AND posts.author = x AND viewed.reader = reader)

6EmitIntermediate ((x.nation , reader), (num_read , num_posts))

7

8reduce ((nation , reader), Iterator values):

9num_read = 0

10num_posts = 0

11

12for each v in values:

13num_read += v.first

14num_posts += v.second

15

16EmitTuple(nation , reader , num_read/num_posts)

The Map-Reduce code for this query is similar to the code from Query 1. In the mapper, we first get all
distinct readers, i.e. readers that read posts from members that are stored on this node. Then we get the
reader’s friends and get, for every friend, his number of posts and the number of views of his posts. Then we
send these two number to a reducer, where the key is a combination of the author’s nation and the reader’s
id.

In the reducer, we get tuples for every nation and every reader. We just have to sum the reads (numerator)
and the post (denominator) and output the divided value. Note, that this approach works even if the data is
partitioned according to authors, as described in Section 2.1.3. The only crucial thing is that the part of the
friends table is present, such that we can get all friends per author.

