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Abstract

Previous work has shown how the well-studied and SIMD-
friendly Structure of Arrays (SOA) data layout strategy can
speed up applications in high-performance computing com-
pared to a traditional Array of Structures (AOS) data lay-
out. However, a standard SOA layout cannot handle struc-
tures with inner arrays; such structures appear frequently in
graph-based applications and object-oriented designs with
associations of high multiplicity.

This work extends the SOA data layout to structures with
array-typed fields. We present different techniques for in-
lining (embedding) inner arrays into an AOS or SOA layout,
as well as the design and implementation of an embedded
C++/CUDA DSL that lets programmers write such layouts
in a notation close to standard C++. We evaluate several
layout strategies with a traffic flow simulation, an important
real-world application in transport planning.
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1 Introduction

In recent years a variety of applications [19] have been im-
plemented on GPUs in order to utilize their massive paral-
lelism, in areas such as database systems, machine learning,
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mathematics or real-world simulations (e.g., traffic simu-
lations [23, 24]). Our recent focus is on applications that
are amenable to object-oriented programming such as agent-
based simulations (e.g., traffic flow simulations [21]) or graph
processing algorithms. Due to conceptual differences in the
programming models and hardware architectures between
CPUs and GPUs, developing performant GPU programs is
not straightforward for most programmers. There are a num-
ber of best practices for achieving good performance on
GPUs, ranging from control flow optimizations to data lay-
out optimizations; such optimizations are often tedious to
implement, lead to less readable code and interfere with pro-
gramming abstractions. One well-studied best practice for
CPUs and GPUs is Structure of Arrays (SOA).

AOS and SOA Well-organized programs make frequent
use of structs or classes. Array of Structures (AOS) and Struc-
ture of Arrays (SOA) describe techniques for organizing
multiple structs/objects in memory. In AOS, the standard
technique in most compilers, all fields of a struct are stored
together. In SOA, all values of a field are stored together.
SOA can benefit cache utilization [4] and is useful in SIMD
programs: Two values of the same field but different object
can be loaded into a vector register in a single instruction.
Similarly, GPUs can combine multiple simultaneous global
memory requests within a warp (group of 32 consec. threads)
into fewer coalesced requests, if data is spatially local [6, 18].
SOA works well with simple data structures, but cannot

be applied easily to structs that contain arrays or other col-
lections of different size. Such arrays must be allocated at
separate locations, requiring an additional pointer indirec-
tion (Fig. 1). In this work, we study two important real-world
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When processing multiple
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Figure 1. Example: Vertex class in SOA memory layout with 1000 objects.
Values for distance and num_neighbors are stored in SOA arrays, but
neighbor arrays must be stored in a different location, because every array
may have a different size. This requires an additional pointer indirection and
simultaneous accesses into neighbor arrays are unlikely to be coalesced.
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applications: breadth-first search (BFS) and an agent-based,
object-oriented traffic flow simulation. In graph processing,
most vertices have multiple neighbors and adjacency lists
are the preferred representation for BFS on GPUs [5]. The
traffic flow simulations exhibits graph-based features for
representing street networks and utilizes array-based data
structures within the simulation logic. Algorithms that iter-
ate over arrays one-by-one or in a fashion that is uniform
among all objects are particularly interesting, because their
memory access can be optimized. While a standard SOA lay-
out groups together all elements of an array per object, a
different, more SIMD-friendly layout can group elements by
array index and benefit from memory coalescing.

Ikra-Cpp Even though SOA can lead to better memory
performance, it cannot be combined with object-oriented
programming (OOP) in CUDA andmany other programming
languages while maintaining OOP abstractions [22]. C++ li-
braries like SoAx [7] and ASX [25], or the ispc compiler [20]
lay out data as SOA while providing an AOS-style program-
ming interface, but they do not support object-oriented pro-
gramming. Neither do they support SIMD-friendly array-
typed fields. The goal of the Ikra-Cpp project is to provide
a set of language abstractions and optimizations for object-
oriented high-performance computing on CPUs and GPUs.
The focus of this paper is on array-typed fields.

Contributions and Outline This paper makes the follow-
ing contributions.

• An analysis and performance evaluation of data layout
strategies for array-typed fields in a SOA data layout.
• The design and implementation of Ikra-Cpp, an em-
bedded C++/CUDA DSL that allows programmers to
design object-oriented programswith array-typed fields
in AOS-style notation, while storing data in SOA lay-
out with inner array inlining.
• A parallel implementation of a traffic flow simulation,
an important real-world application in transport plan-
ning, based on cellular automata on GPUs.

In the remainder of this paper, Sections 2 and 3 discuss layout
strategies for array-typed field and their API/implementa-
tion in Ikra-Cpp. Section 4 shows how they can be applied in
a larger project, a traffic flow simulation. Section 5 presents
a performance evaluation with various layout strategies. Fi-
nally, Sections 6 and 7 discuss related work and conclude.

2 Data Layout Strategies for Inner Arrays

This section describes seven inner array layout strategies,
focusing on C++-style arrays with fixed size after allocation.
Fig. 2–5 visualize thesee strategies, using the Vertex class
of a breath-first algorithm (Fig. 6(a)) as an example.
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Figure 2. No Inlining: AOS (left side) and SOA (right side). Low memory
footprint, but inner arrays must be accessed through a pointer indirection.
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Figure 3. Full Inlining: AOS (left side) and SOA (middle, right side). High
memory footprint if inner arrays have different sizes, but arrays can be
accessed without pointer indirection.
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Figure 4. Partial Inlining: AOS (left side) and SOA (middle, right side). The
first two inner array elements can be accessed without pointer direction,
but a conditional branch is required to check if an element is stored in the
object (inlined) or in the external storage.
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Figure 5. SOA, Array as Object. High memory footprint if inner arrays
have different sizes, but arrays can be accessed without pointer indirection.
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2.1 Data Layouts

We consider three kinds of layout strategies: AOS, SOA and
Array as Object (i.e., SOA without handling inner arrays spe-
cially). For each one, inner arrays can either be fully inlined,
partially inlined or not inlined at all (without inlining).

AOS without Inlining (Fig. 2 (left)) This is the default
data layout that many programmers choose intuitively. Ob-
jects are laid out as AOS, i.e., all fields of an object are stored
together. Since inner arrays can have different sizes, they are
allocated at different locations and referenced with point-
ers. This can either be done manually (using malloc/new)
or with a helper class like std::vector<T>. Depending on
the structure, compilers may have to add padding to ensure
that all fields are aligned properly. “AOS without Inlining” is
identical to “AOS with Partial Inlining” with an inlining size
of zero; the conditional branch is optimized away.

AOS with Full Inlining (Fig. 3 (left)) This layout strat-
egy still lays out objects as AOS, but inlines inner arrays
fully into objects, such that they can be accessed more ef-
ficiently without a pointer indirection. Furthermore, small
inner arrays may be able to share cache lines with other
fields, and thus benefit cache utilization. However, this ap-
proach wastes memory; all inner arrays must have the same
size, i.e., the largest size among all inner arrays, to be able to
hold all elements. The amount of wasted memory depends
on the variance among inner array sizes. This layout can be
implemented with a helper class like std::array<T, N>.

AOS with Partial Inlining (Fig. 4 (left)) This layout is a
mixture of the previous two strategies. Up to N many inner
array elements are inlined into objects, where N is a compile-
time constant. Elements with an index ≥ N are stored exter-
nally at a different location. The benefit of this approach is
efficient access to the first N elements. Access to elements
on the external storage is as expensive as with “No Inlining”.
Furthermore, this strategy requires an additional conditional
branch to determine whether an element is stored in the
inline storage or on the external storage. This imposes al-
most no overhead on GPUs, which do generally not execute
instructions speculatively. This layout can be implemented
with a helper class like absl::InlinedVector<T, N>1.

SOA without Inlining (Fig. 2 (right)) This layout stores
objects as SOA (all values of a field together, sorted by object
ID). This approach has a number of benefits: First, if not all
fields are used all the time, it can improve cache utilization
because those fields will not occupy cache entries. Second, it
allows for efficient loads/stores from/into vector registers if
objects with consecutive IDs are processed. Third, it allows
for memory coalescing on GPUs if objects with consecu-
tive IDs are processed within a warp. Finally, no memory is
wasted for object padding; only the field arrays themselves
1Part of the Abseil library. See https://github.com/abseil/abseil-cpp.

must be aligned. With respect to inner arrays, the same ad-
vantages and disadvantages as in the first strategy apply.
This layout is supported by Ikra as inlined_array_(T, 0).

SOA with Full Inlining (Fig. 3 (right)) This layout treats
every inner array slot as a separate field and allocates values
for every array index in a separate SOA array. It provides
opportunities for vectorized operations and memory coa-
lescing not only for primitive fields but also when accessing
inner array elements. This is possible if objects with consec-
utive IDs are processed in the same warp and inner array
elements with the same indices are accessed. Many parallel
graph algorithms [15] on GPUs do not benefit much from
additional memory coalescing in this layout. Even though
reading the pointers in an adjacency list can be coalesced,
data reads/writes on neighboring vertices are still uncoa-
lesced, because vertex IDs of neighbors are usually random
and not consecutive. Similar to the second strategy, this lay-
out provides more efficient array access without a pointer
redirection but can waste memory. It is supported by Ikra as
fully_inlined_array_(T, N).

SOA with Partial Inlining (Fig. 4 (right)) Similar to the
third strategy, this layout is a mixture between no and full
inlining. The first N inner array elements can be accessed ef-
ficiently and may benefit from vectorized operations and
memory coalescing. This layout is supported by Ikra as
inlined_array_(T, N).

SOA with Array as Object (Fig. 5) This layout treats in-
ner arrays as normal C++ objects and does not perform any
data layout transformations on them. There is one SOA ar-
ray for every field, including inner arrays. This layout is
useful if the total data size is small and all elements of an
inner array are always used together. In that case, all inner
arrays can fit into the cache and accessing the first inner
array element will prefetch the next ones. Furthermore, if an
application exhibits nested parallelism with respect to inner
arrays, those accesses can be vectorized and coalesced. This
layout is supported by Ikra as field_(std::array<T, N>).
From an inlining perspective, this layout inlines the in-

ner array fully. It could easily be adapted to partial inlining
(field_(absl:: InlinedVector<T, N>)) or without in-
lining (field_(std::vector <T>)), but we do not analyze
such layouts any further in this work.

2.2 Choosing a Layout Strategy

Programmers have a variety of layout strategies to choose
from. Which strategy is best depends on the hardware archi-
tecture, the data access patterns of the application and the
characteristics of the dataset. With Ikra-Cpp, programmers
still have to take these factors into account, but switching
between strategies is now much easier. As a rule of thumb,
we suggest to start experimenting with a partial inlining size
that ensures that 80% of all inner array elements are inlined.
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3 Design and Usage of Ikra-Cpp

To make the development of object-oriented GPU programs
easier and more productive, we developed Ikra-Cpp, an em-
bedded C++/CUDA DSL [22]. It focuses on data layout opti-
mizations, including strategies for inner array inlining. In the
next paragraph, we describe the frontier-based BFS algorithm
for GPUs. This algorithm serves as an example when describ-
ing the API of Ikra-Cpp in Section 3.1. Finally, Section 3.2
describes the main implementation ideas behind Ikra-Cpp;
for details, refer to our implementation paper [22].

Frontier-based Breadth-first Search BFS is a fundamen-
tal algorithm in graph processing. A variety of implemen-
tation strategies have been proposed for GPUs, some based
on advanced techniques such as hierarchical queues [13] or
virtual warp-centric programming [8]. The frontier-based
BFS algorithm [16] is among the simplest ones and provides
a reasonable speedup compared to CPU execution.
BFS computes the distance of every vertex from a desig-

nated start vertex. At first, the start vertex has distance zero
and all other vertices have distance infinity. The algorithm
now proceeds iteratively. In iteration i , all vertices with dis-
tance i (i.e., the frontier) are processed in parallel: For every
vertex in the frontier, all of its neighbors are updated with
distance i + 1, unless they already have a smaller distance
value. The algorithm terminates if no updates are performed
or, in this example2, after a fixed number of iterations. BFS is
an interesting example for Ikra-Cpp because the adjacency
lists are arrays of different sizes.

3.1 Programming Interface

C++ classes with SOA layout must inherit from the special
class SoaLayout (Fig. 6(a), Line 1). The first template argu-
ment is the class itself and the second one is the maximum
number of objects of that class, a compile-time constant. Ob-
jects must be created with the new keyword. They cannot be
stack-allocated or stored in local variables. They are always
referred to with pointers or references. A SOA class must be
initialized with two macros (Fig. 6(a), Lines 4, 17).

Field Types Fields of primitive type are declared with spe-
cial SOA field types ending with an underscore (Fig. 6(a),
Lines 15, 16). For example, an int variable is declared with
int_. All other types are declared with field_(type), where
type is any C++ type. Finally, arrays are declared as follows.
• fully_inlined_array_(T, N): Stores N elements
of base type T fully inlined.
• inlined_array_(T , N ): Stores N elements of base
typeT partially inlined. The full size of the array must
be specified during field initialization (Fig. 6(a), Line 5).

The ideal strategy for a given application depends heavily on
its runtime data access patterns. Section 5 discusses guide-
lines for choosing a good strategy.
2Such a termination criteria can be implemented with Ikra-Cpp.

1 class Vertex : public SoaLayout<Vertex, kMaxNumVertices,

2 /* This arena can store 2 arr. elements per vertex on avg. */

3 StorageWithArena<kMaxNumVertices*2*sizeof(Vertex*)>> {

4 public: IKRA_INITIALIZE_CLASS

5 __host__ Vertex(int num_n) : neighbors_(num_neighbors),

6 num_neighbors_(num_neighbors) {}

7 __device__ void visit(int frontier) {

8 if (distance_ == frontier)

9 for (int i = 0; i < num_neighbors_; ++i)

10 neighbors_[i]->update(distance_ + 1);

11 }

12 __device__ void update(int new_distance) {

13 if (new_distance < distance_) distance_ = new_distance;

14 }

15 int_ distance_ = std::numeric_limits<int>::max();

16 int_ num_neighbors_; inlined_array_(Vertex*, 3) neighbors_;

17 }; IKRA_DEVICE_STORAGE(Vertex);

(a) Vertex class for BFS with frontiers. Regardless of the runtime size of a
neighbors_ array, 3 array slots are allocated (inlined) in the object. This
number (partial inlining size) was chosen based on dataset characteristics,
such that more than 80% of inner array elements are inlined. Additional
elements are stored in an arena, whose size was calculated from dataset char-
acteristics and the partial inlining size. The constructor has no __device__
annotation because all objects are created from host code in this example.

1 void load_vertices_from_stream(std::fstream str) {

2 int num_neighbors, next;

3 while (str >> num_neighbors) { // read integer into variable

4 Vertex* vertex = new Vertex(num_neighbors);

5 for (int i = 0; i < num_neighbors; ++i) {

6 str >> next; Vertex* n = Vertex::get_uninitialized(next);

7 vertex->neighbors_[i] = n;

8 } } }

9 void run_bfs(int start_vertex) {

10 Vertex::get(start_vertex)->update(0);

11 for (int i = 0; i < 100; ++i) cuda_execute(&Vertex::visit, i);

12 }

(b) Creating new vertices on the host and running BFS on the device, assum-
ing the input stream contains of a concatenation of adjacency lists (vertex
IDs), preceeded by their lengths. For performance reasons, array elements
should not be set one by one (Line 7), but transferred as an entire array.

Figure 6. Example: Breadth-first search on a directed graph in Ikra-Cpp.

Ikra-Cpp has storage strategies for allocating memory.
A strategy is specified as the third template argument to
SoaLayout (Fig. 6(a), Line 3). The default strategy (if no third
argument is provided) is the static storage strategy which stat-
ically allocates a chunk of data. The benefit of this approach
is that many address computations can be constant folded
and are more efficient [11]. However, this also means that the
maximum number of objects of a class is now a compile-time
constant. If a partially inlined array is used, programmers
must use the static storage strategy with fixed-size arena. This
strategy allocates an arena of given size, within which ex-
ternal storage of additional inner array elements is allocated
efficiently with bump pointer allocation.

Creating Objects In Ikra-Cpp, every object has an im-
plicit ID, accessible with the function id() and starting from
zero. New objects are created with the new keyword both
on the host and on the device, regardless of where data is
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stored physically, as long as the constructor has the required
__device__ or __host__ qualifiers (Fig. 6(a), Line 5). In gen-
eral, performance-critical code should run where the data is
located; however, in our experiments it was often more con-
venient to run setup code (e.g., loading and parsing data from
an external source, and creating the necessary objects) on the
host. Ikra-Cpp takes care of memory transfers automatically.
The static function get() (Fig. 6(b), Line 10) returns a

pointer to an object by ID. get_uninitialized() can be
used to get a pointer to a not-yet-created object, which is
useful during data imports (Fig. 6(b), Line 6).

Parallel Execution The Ikra-Cpp executor API can run
member functions or createmultiple objects in parallel on the
GPU, without having to define or launch CUDA kernels ex-
plicitly. cuda_execute (Fig. 6(b), Line 11) runs a __device__
member function in parallel for all objects of a class. Pro-
grammers can also restrict execution to an ID range or an
array/vector of pointers. Multiple objects can be created in
parallel with cuda_construct, Ikra-Cpp’s parallel version
of the C++ operator new[]. Since only one set of arguments
can be provided for all new objects, constructors must use
the id() function if objects should be initialized differently.

3.2 Implementation

Ikra-Cpp is implemented with advanced C++ techniques
such as template metaprogramming and operator overload-
ing. However, the fundamental idea behind its implementa-
tion is simple and centered around fake pointers: Pointers to
SOA objects do not point to valid, allocated memory but en-
code object IDs. Fields such as distance_ (Fig. 6(a), Line 15)
are declared with special types like int_. When they are used
in a context that requires an integer (e.g., Fig. 6(a), Line 10),
C++ will convert the value from int_ to int. This conver-
sion procedure is overloaded statically by Ikra-Cpp (via the
implicit conversion operator): The object ID is extracted from
the this pointer and the actual memory location of that field
value is calculated and accessed. After constant folding and
function inlining, the generated binary code is as efficient
and often identical to a hand-written SOA layout [22].

4 Example: Traffic Flow Simulation

Traffic flow simulations are important tools in transportation
planning [14] and used to guide the design of city street net-
works. In this section, we present an agent-based microsim-
ulation of single vehicles (agents) which move on a street
network. It is based on the Nagel-Schreckenberg model [17],
a simple cellular automata, which can reproduce real-world
traffic phenomena [26, 27] such as traffic jams.

4.1 Simulation Model

In the Nagel-Schreckenberg model, a street (link) is divided
into equally-sized cells, each of which can contain up to one
agent. An agent can move onto a neighboring cell only if

...
max_vel = 3

max_vel = 5max_vel = 5
max_vel = 5

distance: 2 cells

Avoid collision:
Max. velocity: 2 cells/iteration

Temp. speed limit controlled
by traffic light. Only one cell
can have velocity > 0.

max_vel = 3lookahead for smart
traffic light: 3 cells

Figure 7. Example: Cells and their connections on a small street network
with a single intersection. The intersection itself has no cell.

it is free. Every agent has a velocity, measured in cells per
iteration. Both agents and cells have a maximum velocity;
the latter one can be used to model speed limits on links. An
iteration in our simulation consists of the following steps,
each of which is executed for every agent a.

1. Increase the agent’s velocity unless it is already driving
at its maximum velocity: va ← min(va + 1, v_maxa )

2. Determine the agent’s path of movement of length
va , i.e., the next va many cells it will pass through. A
navigation strategy determines the next cell at an inter-
section with multiple outgoing cells. This simulation
uses random walk, biased towards large streets.

3. Avoid collisions with other agents and enforce speed
limits. To avoid collisions, reduce the speed va to the
largest possible value such that the first va many cells
on the calculated path are free. To follow speed limits,
reduce va to the largest possible value, such that va ≤
v_maxc for each cell c among the first va many cells
on the calculated path.

4. Reduce the agent’s velocity by one unit with a proba-
bility of 20% (randomization).

5. Move the agent from its current location by va many
cells according to the calculated path.

Intersections and Traffic Lights Every cell has zero, one,
or multiple outgoing cells, forming a directed graph. In the
first case, the cell is a sink, i.e., a link leaves the simulation
area. Agents entering a sink will be randomly redistributed.
The second case is most common and represents a regular
link cell. The third case appears at intersections, where a cell
is connected to the first cell of every outgoing3 link.
It is important to ensure that only one agent enters an

outgoing link (i.e., its first cell) at an intersection in one
iteration, even if multiple agents from different incoming
links are waiting. To that end, a traffic controller can impose
3Two-way links consists of one incoming and one outgoing link.
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-car : Car*
-incoming_cells : Cell*[]
-is_free : bool
-outgoing_cells : Cell*[]
-speed_limit : int
-temp_speed_limit : int = INFTY
-type : OsmStreetType
+is_free() : bool
+occupy(car : Car*)
+outgoing_cell(idx : int) : Cell*
+max_velocity() : int
+num_outgoing_cells() : int
+release()
+remove_temp_speed_limit()
+set_temp_speed_limit(vel : int)

Cell

-is_active : bool
-max_velocity : int
-position : Cell*
-velocity : int
-path : Cell*[]
+step1_increase_velocity()
+step2_calculate_path()
+step3_constraint_velocity()
+step4_randomize()
+step5_move()

Car

-cells : Cell*[]
+cell(idx : int) : Cell*
+num_cells() : int
+signal_go()
+signal_stop()

SharedSignalGroup

-groups : SharedSignalGroup*[]
-phase : int
-phase_length : int
-timer : int
+step()

TrafficLight

-groups : SharedSignalGroup*[]
+step()

YieldController

SmartTraff icLight

0..*

0..1

1..*

1..*

0..*

Figure 8. Simplified Architecture and Classes of Traffic Flow Simulation. For every array (highlighted in gray), an additional array size field is allocated.

for (int i = 0; i < 100; ++i) {

cuda_execute(&SmartTrafficLight::step);

cuda_execute(&YieldController::step);

cuda_execute(&Car::step1_increase_velocity);

cuda_execute(&Car::step2_extend_path);

cuda_execute(&Car::step3_constraint_velocity);

cuda_execute(&Car::step4_randomize);

cuda_execute(&Car::step5_move);

}

Figure 9. Running the simulation for 100 iterations.

temporary speed limits on cells, e.g., a speed limit of zero,
corresponding to a red light [3]. Traffic controllers set and
remove speed limits for the last cells of all incoming links
such that only one incoming link has a green light at a time4.
We implemented three kinds of controllers.
• Traffic lights impose a temporary speed limit of zero on
all but one incoming link. A green phase is scheduled
round-robin for phase length many iterations among
all incoming links.
• Smart traffic lights work like normal traffic lights but
assign a green phase to an incoming link immediately
if it is the only one with a waiting agent. Real traffic
lights have sensors/cameras to provide such behavior.
All traffic lights in the benchmark section are smart.
• Yield controllers model yield traffic signs, which are
often found at the end of merge lanes of highway en-
trances. Given n incoming links, a temporary speed
limit of zero is assigned to all links i > s if link s has an
agent, i.e., incoming links/cells in the controller should
be ordered by priority.

The last two controllers are implemented such that traffic
does not have to stop/slow down in front of an intersection,
by checking all cells from which an agent could cross an
intersection in one iteration (not only the closest incoming

4This simple model can easily be extended to a more realistic one where
agents can enter an intersection from multiple incoming links.

cell), as indicated by the maximum allowed speed limit on a
link (lookahead). This is done with graph traversal on back
edges (incoming cells), which terminates when an agent was
found within lookahead range.

Parallelization The Nagel-Schreckenberg model is suit-
able for parallel execution on GPUs [10] because it does not
require any special parallel data structures such as queues
or arrays with concurrent access. Parallelism is expressed in
terms of agents and traffic controllers. The first four steps
are read-only on cells and serve as a preparation phase, build-
ing up a temporary data structure (path, speed limit) within
agents. The final step starts when the previous ones were
completed for all agents and writes updates to cells. A cell is
never updated by multiple agents within an iteration.

4.2 Implementation in Ikra-Cpp

This simulation has a class for every real-world entity (Fig. 8).
Shared signal groups impose temporary speed limits (zero =
stop signal/red light or infinity = go signal/green light) on
a group of cells. They are used to implement turn lanes at
intersections; all turn lanes of an incoming link have the
same signal. Furthermore, they are useful for more realis-
tic setups, where more than one link has a go signal. Real-
world street networks can be imported from OpenStreetMap
(OSM) dumps in GraphML file format. Such dumps include
link properties such as position, shape, connections to other
streets, speed limits and OSM street type (e.g., “highway”).

Arrays The classes in this simulation contain 6 arrays and
they are used as follows.
• Car::path: Cleared at the beginning of an iteration,
filled sequentially in Step 2, read sequentially in Step 3
and Step 5 (loops may break and not read/write the
entire array).
• Cell::outgoing_cells: Read sequentially in Step 2
to determine the next Car::velocitymany cells. The
entire array and pointed-to cells are read to calculate
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probabilities of biased random walk, favoring large
links according to OSM link type.
• Cell::incoming_cells: Read during graph traversal
of yield controllers and smart traffic lights, for every
cell (and reachable cells up to a max. distance/looka-
head) within every signal group of that controller. Tra-
versal stops when an agent was found. Traffic con-
trollers traverse the graph with recursive DFS5.
• TrafficLight/YieldController::groups: Read se-
quentially in the respective class’s step function, but
the loopmay break early. See Cell::incoming_cells.
• SharedSignalGroup::cells: Read sequentially dur-
ing graph traversal. See Cell::incoming_cells.

5 Performance Evaluation

All experiments were performed on a desktop machine with
an Intel i7-5960X CPU (8x 3.00 GHz), 32 GBmain memory, an
Nvidia GeForce GTX 980 GPU (4 GB memory), Ubuntu 16.04,
and the nvcc compiler from the CUDA Toolkit 9.1. We fo-
cus on GPU execution, but similar effects can be observed
on CPUs with a auto-vectorizing compiler. Our previous
work has shown that the performance overhead of Ikra-Cpp
compared to a handwritten SOA layout is negligible [22].

5.1 Synthetic Benchmark

To isolate the effect of array inlining, we created a synthetic
benchmark with a test class containing one int data field,
one int array and one int field storing the array size. The
array has between 32 and 64 elements (chosen randomly).
The benchmark adds the data field value to all array elements
in a loop, i.e., all inner array elements are read and written.

Fig. 10(a) shows the running time for 262,144 test objects.
The “Array as Object” SOA version is more than 30% faster
than the AOS version. The fully inlined SOA version is an
order of magnitude faster than the AOS version. Partial array
inlining sizes larger than 32 do not improve the performance
in SOA mode anymore, because inner array accesses are
unlikely to be coalesced from that point.

5.2 Breadth-first Search

Fig. 10(b) shows the running time for the frontier-based BFS
algorithm with different layout strategies on the Pennsyl-
vania road network (1,088,092 vertices, 3,083,796 directed
edges, avg. degree 2.83) [12]. The graph clearly shows the
benefit of SOA over AOS. The performance of AOS degrades
with a growing inlining size, because more cache entries
for non-existing neighbors array slots are wasted. BFS does
not benefit from memory coalescing when inlining inner ar-
rays in SOA mode (compare “SOA (object)” and “SOA (full)”),
because the neighbors accessed in Fig. 6(a), Line 10 have
“random” IDs; for memory coalescing, consecutive ID ranges
for any given array index are required among vertices within

5BFS with nested parallelism should be used for better performance.
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Figure 10. Running time for synthetic benchmark and BFS. The x-axis
shows different inner array layout strategies and inlining sizes.

a warp. Nested parallelism can speed up such algorithms [8]
and would benefit from an Array as Object layout.

5.3 Traffic Flow Simulation

We ran the traffic flow simulation with 229,376 agents on a
real-world OSM street networks of the Denver-Aurora ur-
banized area [1] (8,339,802 cells, 62,819 smart traffic lights,
4,792 yield controllers, 205,129 shared signal groups). Maxi-
mum cell velocities are µ = 6.16 on average (σ = 1.06). After
1000 iterations, agents had an average velocity of µ = 1.57
(σ = 2.56). Fig. 11 shows the running times and device mem-
ory requirements for AOS/SOAmode and various inner array
inlining strategies. In every subfigure, various inner array
layout strategies for a single field are evaluated; all other
arrays are fully inlined.

AOS vs. SOA The benefit of a SOA layout over an AOS lay-
out is clearly visible in this benchmark. Regardless of which
inner array inlining strategy is chosen, the running time
spent on processing agents is always significantly smaller in
SOA (any subfigure, upper chart, e.g., first bar vs. second bar).
We can observe a similar behavior for traffic controllers.

InnerArray Inlining in SOA The benefit of array inlining
can be observed best in SubFig. (c) when comparing the
running time of a fully inlined Car::path (third bar) with
one that is stored “as object”. The fully inlined version is
15% faster. This is because our implementation of the Nagel-
Schreckenberg algorithm iterates over the path array in every
thread; first to precompute a path, then to adjust the agent’s
velocity. Because all agents are processed in order (i.e., thread
i processes agent with ID i), memory accesses are coalesced.
Furthermore, a slightly better speedup can be achieved with
partial array inlining, starting from an inlining size of 6,
because few agents (<20%) have a velocity higher than 6. In
that case, accesses to Car::path at indices higher than 6
are unlikely to be coalesced because very few threads access
these array slots; we believe that the additional speedup is
due to better cache utilization and prefetching: A cache line
in the external arena storage contains multiple elements of
the same inner array.
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Figure 11. Running Time andMemory Requirement for Traffic Simulation.
The upper part of every subfigure shows the running time (seconds, y-axis)
in AOS/SOA data layout with various inner array inlining strategies and
inlining sizes (x-axis). The lower part shows the memory requirement in
AOS data layout (GB or MB, y-axis), grouped by arena/standard allocation.

Cells (Subfig. (a), (b)) do not benefit much from inner array
inlining when comparing running times. This is because
parallelization in this program is never expressed in terms
of cells, but always in terms of agents and traffic controllers.
Those entities access fields and inner array elements of cells
at random, because they contain pointers to “random” Cell
objects. Consequently, the CUDA threads within a warp
access data from cells with totally different IDs, i.e., the data
locality required for memory coalescing is missing.

Memory Footprint The lower part of every subgraph shows
the memory requirement for all objects of the respective
class. The white part represents inlined allocation (e.g., regu-
lar fields or inlined data of arrays). The darker part represents
external storage (arena allocation). Subfig. (a) and (b) show
that the vast amount of cell data is used on regular fields
(e.g., speed limits, array sizes, etc.) and only around 60 MB

each are required for incoming and outgoing cell arrays (see
arena allocation for inlining size 0). If more than one array
element is inlined, the memory footprint increases gradually,
because 95% of all cells have only one neighbor.
The memory footprint for agents increases for inlining

sizes above 15, because all agents have a maximum speed
limit of at least 15; an array of size at least 15 must be allo-
cated for every agent. An inlining size of 15 results in a good
tradeoff between memory footprint and performance; no
performance is lost compared to a fully inlined inner array.

Other Observations Compared to fully inlined inner ar-
rays, accessing elements on partially inlined inner arrays
requires an additional if check for checking if an element is
located within the external storage. This overhead is negligi-
ble on GPUs (e.g., compare “SOA (partial), Cars” at a high
inlining size with “SOA (full), Cars” (third bar)). We attribute
this to the fact that GPUs do not execute speculatively, i.e.,
no performance can be lost by mispredicting a branch target.
In AOS mode, the performance of agent computation de-

creases with a higher inlining size (SubFig. (c), “AOS (partial),
Cars”). This is because the likelihood of a path element being
brought into the cache together with another field/element
(prefetching/cache line) increases, even though that element
might never be accessed (few cars have a velocity > 6).

6 Related Work

SOA is a well-studied data layout technique for CPUs and
GPUs and a best practice for GPU programmers [6]. C++ li-
braries like SoAx [7] and ASX [25] allow programmers to use
SOA as a data layout strategy while maintaining an AOS-like
programming style. The Intel SPMD Program Compiler [20]
extends the C programming language with additional key-
words for SOA and minimizes notation/API overhead. More-
over, previous work has investigated how to apply layouts
like SOA or AoSoA (Array of Structure of Arrays) automat-
ically, without programmer intervention [9]. Furthermore,
there has been work on applying such layouts to complex
structures with multi-dimensional arrays [28]. The focus of
Ikra-Cpp is on object-oriented programming (i.e., classes,
member functions, constructors, etc.); C++ features that are
not supported by such libraries/compilers. Complex struc-
tures like AoSoA or multi-dimensional arrays could be sup-
ported in Ikra-Cpp in the future.
Object inlining has been proposed for Java-like object-

oriented languages for better cache performance and reduc-
ing overheads due to allocation and pointer indirections [2].
Later work applied the idea of data inlining to arrays, which
simplifies address arithmetics of array accesses and elimi-
nates load instructions in the assembly [29]. Ikra-Cpp applies
the same idea to arrays in SOA layout, under simplified as-
sumptions: Arrays are of fixed size and inlining is controlled
manually by the programmer.
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7 Summary

In this work, we presented an overview of various data lay-
out strategies for inner arrays in a Structure of Arrays lay-
out. Such arrays can be split and regrouped by array index
(inlined into the SOA layout) to take advantage of SIMD
speedups through vectorized instructions or memory coa-
lescing. Since writing and maintaining such low-level code
is tedious, we extended Ikra-Cpp, a C++/CUDA DSL for
high-performance object-oriented programming on CPUs
and GPUs, with additional types that lay out inner arrays
in a more SIMD-friendly format. In the future, we will fo-
cus on control flow optimizations for SIMD programs such
as nested parallelism or control flow divergence avoidance
mechanisms.
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