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Abstract

This paper presents implementation and optimization techniques to
support objects in Ikra, an array-based parallel extension to Ruby
with dynamic compilation. The high-level goal of Ikra is to allow
developers to exploit GPU-based high-performance computing with-
out paying much attention to intricate details of the underlying GPU
infrastructure and CUDA.

Ikra supports dynamically-typed object-oriented programming
in Ruby and performs a number of optimizations. It supports parallel
operations (e.g., map, each) on arrays of polymorphic objects, al-
lowing polymorphic method calls inside a kernel by compiling them
to conditional branches. To reduce branch divergence, Ikra shuffles
thread assignments to base array elements based on runtime types
of elements. To facilitate memory coalescing, Ikra stores objects
in a structure-of-arrays (SoA) representation (columnar object lay-
out). To eliminate intermediate data in global memory, Ikra merges
cascaded parallel sections into one kernel using symbolic execution.

Categories and Subject Descriptors D.1.3 [Concurrent Program-
ming]: Parallel Programming; D.3.4 [Processors]: Code genera-
tion, Compilers

Keywords GPGPU, CUDA, Ruby, object-oriented programming

1. Introduction

With the availability and affordability of powerful GPUs, general
purpose computing on graphics processing units (GPGPU) is be-
coming more and more popular in high-performance computing.
Nowadays, many supercomputers rely on GPUs as main process-
ing units, because they allow for massively parallel execution of
algorithms or simulations with thousands of threads per GPU. How-
ever, GPU programming differs from traditional CPU programming,
mostly because of architectural differences.

The goal of the Ikra project is to make GPU programming
available to developers who are not familiar with the details of
GPUs and their programming languages. Ikra is a library for Ruby
that translates parallel sections to CUDA code and executes them in
parallel on GPUs. It extends our previous work [14] with a dynamic
compilation approach to allow for a larger number of optimizations
and tighter integration with Ruby. To that end, Ikra also supports
polymorphic expressions and variables, allowing programmers to
write Ruby code in a natural way, i.e., programmers should be able
to write the same source code that they would write in a standard

Ruby environment. We target the Ruby programming language
because it provides powerful mechanisms for embedding DSLs in
the language, which will be useful for future work.

2. Example: Agent-based Traffic Simulation

A simple object-oriented, agent-based traffic simulation will serve
as a running example in this paper. The basic idea is to simulate the
behavior of a number of agents [11] (e.g., cars, buses, pedestrians,
etc.), given a street network as a directed graph (Figure 1) in
adjacency list representation. Every agent is located on one street.
Every street has a length attribute and every agent has a progress
attribute representing the distance from the beginning of the street.
Once these two attributes have the same value, the agent reached
an intersection and should be moved to a different street (or make a
U-turn if there is no other neighboring street).

(a) Actual street network (map)

(b) Street network as directed graph

Figure 1: Example: Street Network for Traffic Simulation

A car moves at a constant speed of min(Mc,Ms), where Mc

is the maximum velocity of the car and Ms is the maximum speed
allowed on the current street. A pedestrian moves at a random speed
between −2 mph and 4 mph, i.e., a pedestrian can make negative
progress. This is how we model strolling pedestrians. Furthermore,
depending on their type, the progress of agents might be affected
by weather conditions. For example, cars slow down if the weather
conditions are bad, whereas pedestrians are not affected by weather.

Data Structure The street network and the agents are designed
in an object-oriented way. Figure 2 shows the class organization
of the traffic simulation. Car and Pedestrian are subclasses of

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

ARRAY’16, June 14, 2016, Santa Barbara, CA, USA
ACM. 978-1-4503-4384-8/16/06...
http://dx.doi.org/10.1145/2935323.2935327
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Agent and provide their own move methods which will be invoked
for every tick of the simulation.

-@progress

-@street

Agent

-@max_velocity

+move()

Car

+move()

Pedestrian ...

-@length

-@max_velocity

-@neighbors

Street
1 1..*

Figure 2: Class Diagram for Traffic Simulation

Main Simulation Loop The following code snippet contains the
main simulation functionality. The method peach designates a
parallel section. Its parameter ticks determines how often the entire
peach statement should be executed and is equivalent to wrapping

the peach statement in a loop that executes it ticks times1.

agents = # load scenario from file system

ticks = 1000

weather = Weather::Rainy

agents.peach(ticks) do |agent|

agent.move(weather)

end

Every tick of the simulation progresses the current time by
a certain constant value and agents are required to update their
progress and street attributes accordingly.

3. Architecture

Ikra is a library for Ruby. It adds functionality to arrays to execute
map, reduce, select and each operations in parallel. Programmers
can require Ikra in Ruby files, upon which new parallel versions
of array operations are available (e.g., pmap). These parallel array
operations take a block as an argument and designate the only parts
of a Ruby programs that are parallelized using Ikra.

3.1 Compilation Process

Figure 3 gives a high-level overview of Ikra’s compilation process.
Upon invocation of a parallel section, Ikra acquires the source
code of the parallel block, generates an abstract syntax tree (AST),
and infers the type of all expressions. As a result, the type of
every local and instance variable is known. In the best case, the
type of an expression is monomorphic and primitive, but Ikra also
supports arbitrary Ruby classes as types, as well as polymorphic
types (see Section 4.2). The type inference engine traverses invoked
method bodies for all possible receiver types (union type). Based
on the type-annotated AST, Ikra generates CUDA kernel code and
initialization code for kernel invocation, and compiles the CUDA
code using the nVidia CUDA toolchain. The result is a shared
library which is loaded via Ruby’s foreign function interface. Before
kernel invocation, the base array and lexical variables along with
all reachable objects (via instance variables) are transferred to the
GPU’s global memory. After kernel invocation, all changed objects
and the result of the parallel section (if applicable) are written back
to Ruby.

Ikra’s type inference engine is fused with the object tracer, which
is the component that determines the set of objects that should be

1 There are currently certain limitations for loop nesting. See Section 7.3 for
more details.
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Figure 3: Overview of Ikra’s Architecture

transferred to the GPU. Our current approach for type inference is
one with multiple passes. Type inference for a method is repeated if
the method reads an instance variable and the type of that variable
is expanded while tracing objects (see Section 4.6).

3.2 Integration in Ruby

Ikra transforms Ruby code to CUDA code at runtime when a
parallel operation is invoked (dynamic compilation). Therefore, Ikra
can determine the types of elements/variables that are passed into
parallel sections at runtime instead of doing a dataflow analysis of
the entire program. This is not only faster but also more robust in the
light of reflection and metaprogramming, which is allowed outside
of parallel sections but not inside them.

Two kinds of external variables can be used inside a parallel

section: iterator variables and lexical variables2. In the main loop
of the traffic simulation example, agent is an iterator variable and
weather is a lexical variable. The types of these variables are used
as the basis for type inference of the remaining parallel section.

Programmers can use not only primitive objects (Fixnum, Float,
etc.) but also objects which are instances of Ruby classes inside par-
allel sections, allowing for object-oriented modeling of the problem
(e.g., a traffic simulation). Consequently, a graph of reachable (con-
nected) objects must be transferred to the GPU. The object tracer is
responsible for determining which objects should be copied to the
GPU’s global memory (see Section 4.6).

After kernel execution, changed local variables and instance
variables are copied back to the Ruby side (see Section 4.5).

4. Implementation and Optimizations

In this section, we give an overview of interesting aspects and
optimizations of Ikra’s implementation.

4.1 Symbolic Execution

Parallel array operations (except for peach) are executed symboli-
cally (lazily) in Ikra. They can be cascaded and are executed only if
the result is actually accessed. The default behavior is to spawn one
thread per array element, which is why all these computations must
be independent of each other.

Ikra performs kernel fusion [24; 23], i.e., cascaded parallel opera-
tions are merged into a single CUDA kernel to avoid reading/writing
intermediate results from/to the global memory. Instead, they can
be kept in registers. The process of merging two parallel blocks is
not relevant in the scope of this paper and omitted.

4.2 Polymorphic Expressions

In Ikra, non-primitive object references are represented by an ID
(pointer). The types of polymorophic expressions (also types that
are not in a subtype relationship) are embedded into CUDA’s static
type system using class tags [3]. The type inference engine uses
union types for polymorphic expressions and ignores inheritance
relationships. A value of a union type is represented by a tuple (C++

2 Instance variables can be used when calling an instance method.
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struct) of the object ID and a class tag. A class tag is a unique int
identifier for a certain class. Method calls with polymorphic receiver
types are compiled to switch-case statements on the class tag.

Figure 4 shows the CUDA source code of the main loop of
the traffic simulation example and will be also be used to explain
concepts in the following sections. An array agent of cars and
pedestrians is passed to the kernel function as an array of union
type structs. The device function representing the block invokes the
correct instance method. This example is a simplified one without
any synchronization between threads (see Section 7.2).

__global__ void kernel(int *jobs, struct
utype *agent, int weather, int ticks)

{

int tid = blockIdx.x * blockDim.x + threadIdx.x;

block(agent[jobs[tid]], weather, ticks);

}

__device__ void block(struct
utype agent, int weather, int ticks)

{

for (int i = 0; i <= ticks; i++)

{

switch (agent.tag)

{

case TAG_Car:

method_Car_move(agent.id, weather);

break;
case TAG_Pedestrian:

method_Pedestrian_move(agent.id, weather);

break;
}

}

}

Figure 4: Example: CUDA Source Code for Main Loop

4.3 Job Reordering

Before kernel invocation, Ikra analyzes all elements in the base array
and reorders them according to their type. This is useful to avoid
branch divergence, which can penalize performance when running
programs on GPUs.

Branch Divergence In contrast to most CPU-based systems3,
GPU-based systems are SIMD (single instruction, multiple data)
systems. A GPU consists of a number of streaming multiprocessors.
Such a processor has a single control unit that fetches and decodes
instructions, but multiple arithmetic logic units (ALUs). Therefore,
every instruction is executed in parallel on multiple chunks of data.
Every ALU corresponds to one thread, but all threads that are exe-
cuting on the same streaming multiprocessor must follow the same
control flow. In case two threads take a different branch, their execu-
tion is serialized until the control flow merges again. Consequently,
threads/jobs should be mapped to streaming multiprocessors in such
a way that the control flow is unlikely to divergence among one such
thread group (threads executing on one streaming multiprocessor).

In CUDA, such a thread group is called warp and has a size of
32. CUDA programmers try to write their programs such that each
consecutive group of 32 threads follows the same control flow.

Thread Allocation Ikra tries to avoid branch divergence due to
polymorphic method calls on array elements by allocating jobs

3 There are CPU extensions for SIMD computations, e.g., SSE.

to warps automatically based on runtime type information. Before
kernel invocation, Ikra generates a job reordering array (see jobs

parameter in Figure 4), such that the base array is sorted according
the elements’ types (Figure 5). Ikra does not actually change the
order of elements in the base array to ensure that other parts of the
program outside of the parallel section are not affected.

C P P B C P C P P C C C

warp 1 warp 2 warp 3

C C C C C C P P P P P B

warp 1 warp 2 warp 3 warp 4 warp 5

0 4 6 9 10 11 1 2 5 7 8 3

reorder

base array:

job reordering array:

resulting job order

Figure 5: Example: Job Reordering (assuming warp size 4).

During job reordering the number of threads can increase as
shown in Figure 5. Jobs are reordered in such a way that no two
elements of different types are allocated in the same warp. If the
number of jobs of a particular type is not a multiple of the warp size,
the last warp will not be filled up entirely, so some threads will not
have a job, i.e., they are no operation threads. This might seem like
a waste of computing power, but we expect the number of different
types to be small (3 in this example).

The job reordering array can be computed in linear time by
scanning all elements of the base array twice. The algorithm is
similar to counting sort and bucket sort [6]. It generates one array of
indices per type (class) and concatenates these arrays, making sure
that every new array starts at a multiple of the warp size.

4.4 Structure-of-Arrays Representation

In traditional programming languages and virtual machines, an array
of objects is typically represented as an array of structures, i.e.,
every object is a contiguous chunk of data in the memory. However,
it is common practice in GPU programming to work with multiple
arrays of structure fields (structure-of-arrays) instead of one array of
structures (array-of-structures) for coalescing field accesses [16; 4].

Memory Coalescing Global memory is one of the main bottle-
necks of GPUs. One approach is to aim for memory access patterns
where memory that is accessed in parallel by a number of threads
is spatially local. Such memory accesses can be coalesced, i.e., the
GPU can process such accesses in a single request, alleviating the
global memory bottleneck.

Since a GPU is a SIMD system, all threads within a warp have
to execute the same instruction at a time. Consequently, if one
thread accesses an instance variable, then all other threads within the
same warp access the same instance variable (or block because of
branch divergence), probably in a different object. In this situation, a
structure-of-arrays layout is superior to an array-of-structures layout,
because parallel accesses to the same instance variable are more
likely to be spatially local (Figure 6).

Generating Structure of Arrays In the following, we present
a first approach for representing objects as a structure of arrays.
After running the object tracer, we know which objects should be
transferred to the GPU. Objects are grouped by class and assigned
class-specific IDs, which are used as indices into the newly-created
structure of arrays (similar to the system tracer in Smalltalk [13]).

1. Group objects by their class c, resulting in arrays Oc.
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object 1 object 2 object 3 object 4 object 5

(a) Array-of-Structures (AoS) Layout (uncoalesced)

(b) Structure-of-Arrays (SoA) Layout (maybe coalesced)

Figure 6: Example: AoS and SoA Object Layout. Boxes represent
instance variables. Arrows indicate parallel access.

2. Assign an ID to every object for all Oc, starting from 0 in
every Oc, IDs being consecutive. This results in a hash map
Hc mapping objects to class-specific IDs.

3. For every instance variable v of every class c, create an array
Ac,v of size m + 1, where m is the maximum ID in Oc. The
base type of the array is the type of the instance variable if
it is primitive, or the union type struct if polymorphic, or int
otherwise (referencing other non-primitive objects via their IDs).

4. For every object o with class c and ID Hc[o], store every instance
variable v in the corresponding array slot Ac,v[Hc[o]]. If the
instance variable is non-primitive, look up its ID and store it.

Note that after this transformation, the base type of the base
array that is passed to the kernel, contains object IDs (or union type
structs) if it consists of non-primitive objects (see agent parameter
in Figure 4). In our implementation, the object tracer is combined
with the SoA generator.

Source Code Transformation Since objects are now represented
as a structure of arrays, Ikra must generate different source code for
reading from or writing to instance variables. We do not consider
generating new objects at this time (see Section 7.2).

In the following, we consider reading/writing instance variables
of an object and calling methods on an object, where the object is
identified by its type c and its ID i (or a union type struct). Whenever
objects are passed around, Ikra generates source code that passes
their IDs (or union type structs for polymorphic values) around.

Reading/writing an instance variable v of object o with type c
and ID i translates to reading/writing the array Ac,v[i].

Every instance method is translated to a device function, where
the type c is mangled into its name and the first parameter is
the ID (or union type struct) of the self object. Whenever Ikra
encounters a method call during code translation, it generates a call
to the appropriate device function (or a switch-case statement for
polymorphic expressions).

Representation of Arrays The previously-described SoA object
layout works well with equally-sized objects, but not for arrays,
which are variable-sized objects. For example, the instance variable
@neighbors of class Street is an array of streets.

Ikra effectively represents such n : m relationships as join
tables [9] that are collapsed. Such a table is sorted by object IDs for
n. Furthermore, the n array (column) is not stored as a full array but
as RLE tuples [2] consisting of an implicit ID for n, a start offset into
the m array, and a length value, distributed among multiple columns.
RLE tuples are a well-known optimization in column databases.

From an implementation point of view, an array is an ordinary
object with an offset and a size attribute. The offset attribute points
into a single large array containing the contents of all arrays. This
layout might change in future versions of Ikra (see Section 7.2).
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Figure 7: Example: Array Representation for @neighbors (n :
m relationship). (Street.ID, Array.offset, Array.size) is an
RLE tuple [2].

Polymorphism and Subtyping Polymorphic values are repre-
sented as C++ structs containing a class tag and an object ID.
Consequently, an array for an instance variable of polymorphic type
stores union type structs instead of plain object IDs.

Instance variables of subtypes are stored together with the root

class (after Object) in the superclass hierarchy4. This allows sub-
classes and superclass to share the same IDs, making it possible
to perform super calls without translating the object ID. For ex-
ample, @max_velocity is stored as if it belonged to Agent, i.e.,
|ACar,@max_velocity| = |AAgent,@progress|, even though there are more
agents than pedestrians. If an object is an instance of a different
subclass, the corresponding array values are null [15]. For example,
if object 15 is a Pedestrian, then ACar,@max_velocity[15] is null.

4.5 Read/write Analysis for Instance Variables

As part of type inference, Ikra analyzes if an instance variable is
read and/or written. Only instance variables that are read or written
are transferred to the GPU. Only instance variables that are written
are transferred back to the Ruby side directly after kernel invocation.
Ikra performs a may-be-read/may-be-written analysis, which can
have false positives in case the type of an expression cannot be
determined accurately.

4.6 Object Tracer

The object tracer generates a set of objects that must be transferred
to the GPU before kernel invocation. It starts with a set of root
objects: all elements of the base array and lexical variables. Then,
it traverses the object graph by following all instance variables that
are read or written inside the parallel section.

Tracing objects can result in additional type inference passes.
The reason for that are polymorphic expressions and the fact that
Ikra takes into account only read/written instance variables. During
type inference, Ikra might notice that an instance variable C.v is
read. Consequently, all instance variable values v of all instances of
C must now be traced. During that process, Ikra might find an object
of class D, where an instance variable value w appears with a type
different from the ones seen before. In that case, Ikra must rerun
type inference for all methods that read D.w.

5. Preliminary Benchmarks

To evaluate our optimizations, we conducted a series of hand-

written benchmarks using the traffic simulation example5. We ran

benchmarks on the TSUBAME supercomputer6 on a thin compute
node with two Intel Xeon X5670 CPUs (2.93 GHz × 6 cores
each), 54 GB RAM, and three nVidia Tesla K20Xm GPUs (only

4 We consider only classes that are used in the current parallel section.
5 git@github.com:matthias-springer/array2016-paper.git

6 http://tsubame.gsic.titech.ac.jp/
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one used), running Linux 3.0.76-0.11-default x86_64, CUDA
7.0.27, and Ruby 1.9.3p448.

We simulated 1,000,000 iterations of a random street network
with 500 streets and random vertex out-degrees between 1 and 10,
4,096 cars, and 16,384 pedestrians. All benchmark running times
are average values of 5 runs using the same random scenario.

Kernel Execution Figure 8 shows the kernel running time of
the traffic simulation in various configurations. Figure 8a shows
the running time with a structure-of-arrays (SoA) layout, which
is around 30% faster than an array-of-structures (AoS) layout in
Figure 8b. There are around 10 accesses to instance variables in
each move method. The source code is omitted for brevity reasons
in Figure 4.

Figure 8: Kernel Running Time for Traffic Simulation (CUDA)

The objects involved in this example are quite small. Agents
are represented by 32-byte structs (three instance variables and a
class tag) in an AoS layout, or three 4-byte arrays (class tag is
passed as an argument) in a SoA layout, respectively. The GPU’s L1
cache is 48 KB, with a cache line size of 128 bytes. To analyze the
effect of prefetching, we ran the AoS benchmark with artificially
enlarged object sizes (10/5 additional instance variables that are
never read or written for agents/streets, resulting in an object size
of 72 bytes/32 bytes, respectively; Figure 8c). This configuration is
interesting because the example code accesses all instance variables
of an agent subsequently, diminishing the advantage of a SoA layout,
because the entire object (and three subsequent objects) can be held
in cache (prefetching). A SoA layout is around 60% faster compared
to this configuration.

The running time for transferring data to the GPU and generating
the CUDA code is not included in this benchmark. These two steps
are currently clearly dominated by the execution time of the nVidia
compiler (nvcc), which is around 2-4 seconds. We hope to be able
to reduce the running time of this step by caching and by generating
LLVM intermediate code from Ruby bytecode, which would skip
some steps in the CUDA compilation process (see Section 6).

Job Reordering Figure 9 shows the running time for generating
the job reordering array (warp size 32). This is currently done in
the Ruby interpreter but could be moved to the GPU side in future
versions. The running time increases linearly with the number of
elements in the base array. Changing the number of types (classes)
has only a small effect on the running time. We assume that this
number is much smaller than the number of elements. For the
traffic simulation example, the running time for generating the job
reordering array is neglectable.

Tracing Objects and Generating Structure of Arrays Figure 10
shows the running time for tracing objects and generating the
SoA layout for the traffic simulation example. For the number of
agents/streets that were used in the kernel benchmarks, the running

Figure 9: Running Time for Generating Job Reordering Array
(Ruby)

time is neglectable. Moreover, in future versions of Ikra we want
to perform this step only once and reuse data that was already
processed and moved to the GPU earlier (see Section 7.1). The
running time for type inference is not included in this benchmark.

Figure 10: Running Time for Tracing Objects and Generating SoA
(Ruby)

6. Related Work

Columnar (SoA) data layouts are known to be superior compared to
row-based data layouts for certain kinds of database queries (e.g.,
OLAP queries) [19], and especially for GPU-powered databases [5].
In fact, one of the benefits of column stores for CPU-based database
systems is prefetching, which is similar to coalescing on GPUs, but
without the parallel aspect. Columnar data layouts have also been
evaluated for object-oriented programming languages. Mattis et al.
have implemented a columnar object layout in Pypy to increase
the performance of analytical queries [15]. Ikra essentially uses the
same columnar object layout, but extended to polymorphic types.

A number of different techniques exist for avoiding branch
divergence. Most of them are proposed at application-level, while
Ikra aims at enabling a similar technique at the language level. For
example, one technique is to detect and delay divergent branches at
runtime in order to execute them at a later time [8], or factoring out
instructions that are common to two (divergent) branches [10]. A
different approach is to reorder jobs, either with a reordering array
(which is what Ikra does) or by physically changing the order of the
jobs in the base array. Both techniques can be combined to increase
memory coalescing [26] (physically reordering data, then using
a reordering array to restore the original semantics), but detailed
knowledge about memory access patterns is required. Previous work
has also investigated how the overhead of these transformations can
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be hidden using a CPU-GPU pipelining scheme [25], if done at
runtime in order to react to changes.

Ishizaki et al. presented a framework for executing lambda ex-
pression used with the parallel streams API in Java 8 programs on
nVidia GPUs [12]. Their approach is to generate LLVM intermedi-
ate code (IR) from Java bytecode, which is in our opinion superior
to Ikra’s approach of performing a Ruby-to-CUDA source-code-
to-source-code transformation from an engineering point of view.
Future versions of Ikra might generate LLVM IR code from YARV
bytecode [21]. Further optimizations of their Java 8 compiler in-
clude a check for array aliasing (which is what Ikra’s object tracer
does implicitly) and utilizing a read-only cache. Their implemen-
tation supports virtual method calls using direct devirtualization if
the receiver type can be uniquely determined at compile time, or
guarded devirtualization, executing an iteration on the GPU if the
guard fails; in either case, the GPU code must only be able to han-
dle monomorphic method calls. Ikra’s code generator applies direct
devirtualization, i.e., it does not generate type dispatch statements
if the receiver type is monomorphic and can be inferred unambigu-
ously. Otherwise, it generates CUDA code that dispatches to the
correct method based on class tags.

Firepile is a Scala-to-CUDA compiler [17]. It supports Scala
classes and generates a struct definition per class. The first field has
as type the struct type for the superclass and is needed for inherited
instance variables. The struct for Object contains a class tag used
for method dispatch. Ikra passes and stores class tags together with
object IDs. If class tags were stored in one column shared by all
objects, then all objects (and types) would have to follow the same
numbering scheme, which would lead to sparse columns and a waste
of global memory. The same problem occurs already in a less severe
form in the light of subclassing (see Section 4.4, null values).

7. Future Work

This section gives a brief overview of ideas for future work on Ikra.

7.1 Minimizing Data Transfers

Our current Ikra implementation transfers objects to the GPU’s
global memory every time a kernel is invoked. However, memory
access is one of the main bottlenecks of GPUs and should be avoided.
Future versions of Ikra will try to minimize data transfers by only
transferring changed objects during consecutive kernel invocations,
even if two different kernels were invoked. Similarly, objects should
only be transferred back to the Ruby side once they are actually
accessed. One approach replaces instance variable accessors with
code that retrieves the actual value from the GPU and caches it.

It is our vision that the parallel CUDA code is in full control of
instance creation. The only reason for transferring data to the GPU
should be cases where an object graph is loaded from an external
source or must be swapped from/to the main memory. For example,
a researcher might want to load a street network of a real city from
the file system. It is then not necessary to allocate this data structure
both on the GPU and on the Ruby side. The Ruby program might,
however, access certain objects and some of their instance variables
for UI purposes or to display the result of a computation.

7.2 Data Modification

Ikra’s capabilities to modify data inside a parallel section are still
limited, nevertheless sufficient for use cases like agent-based traffic
simulations or OLAP applications, where data is mostly static.

For example, new objects can be created only on the Ruby side,
but not inside parallel sections. This is because instance variable
arrays must be increased in size when adding new objects. However,
increasing their size might require moving them to a different place
in the global memory, which is expensive.

As another example, it is currently not possible to add or remove
elements from an array7. Future versions of Ikra might store arrays
separately instead of using a single big array (Figure 7). Instead of
storing an offset, this would require storing a pointer.

Ikra does currently not expose CUDA synchronization con-
structs [7] or atomic operations. However, these constructs are nec-
essary if computations between two threads are not independent.

7.3 Nested Loops

Ikra does not yet support nested loops properly. Consider the main
loop of the traffic simulation as an example. Putting a ticks loop
inside the peach block works (only because there is no synchro-
nization necessary in this example) but contradicts intuition. In a
sequential program, most programmers would formulate the simula-
tion code as a series of simulation ticks, where every simulation tick
iterates over all agents, as opposed to iterating of over all agents,
where every agent is moved for a series of simulation ticks:

agents.peach do |agent|

for i in 1..ticks

agent.move(weather)

end
end

The following code snippet is more intuitive, but would allocate
one thread per tick instead of one thread per agent (and works
only if there are no data dependencies between ticks). However,
the mechanism described in this paper takes advantage of allocating
threads based on the agents’ types.

(1..ticks).peach do
agents.each do |agent|

agent.move(weather)

end
end

The following code snippet resembles most accurately what the
code in Section 2 (peach with ticks parameter) is doing, but without
launching a new kernel for every tick.

for i in 1..ticks

agents.peach do |agent|

agent.move(weather)

end
end

Nesting two parallel peach statements within each other is not
supported at the moment. Parallelization is allowed only on one
level. In future versions of Ikra, data will be held in the global
memory as long as possible and only be transferred from/to the
Ruby side if necessary (see Section 7.1). In such a situation, code
that is similar to the one shown in the previous listing could be
written with less kernel invocation overhead.

7.4 Performance Optimizations

Further ideas for performance optimizations include taking advan-
tage of shared memory, which is much faster than global memory.
However, it is not obvious what kind of data to store in shared mem-
ory because of its limited size.

Ikra’s SoA object layout is similar to the data layout of col-
umn databases. Future work might investigate to what degree op-
timizations in the area of column databases [1] are applicable to
a column-based object graph. Data compression mechanisms for
minimizing data transfer time look particularly promising, given the
performance gap between global memory and shared memory, and
have been subject to previous work in GPU computing [18; 20].

7 Changing an element is allowed.
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Ikra currently allocates one thread per array item. However,
the number and size of blocks has a crucial effect on the overall
performance. Future versions of Ikra will contain heuristics to
decide how many array elements to process per threads. Based on
Volkov’s observations [22], we plan to generate interleaved code
that takes advantage of instruction-level parallelism, among other
things depending on how many registers are necessary to process a
single array item.

8. Summary

We presented Ikra, a dynamic Ruby-to-CUDA compiler for array-
based parallel operations. Ikra allows programmers to write source
code in an object-oriented way and applies optimizations to reduce
branch divergence and to increase memory coalescing. Runtime type
information is used to reorder objects in the base array, making sure
that only objects of the same type are executed in a warp. A structure-
of-arrays object layout is beneficial for memory coalescing, because
threads inside a warp are executed in a SIMD manner. Future work
will focus on additional performance optimizations and take into
account a broader set of examples and benchmarks.
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