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Abstract
Object-oriented programming (OOP) has long been regarded as
too inefficient for SIMD high-performance computing, despite the
fact that many important HPC applications have an inherent object
structure. We discovered a broad subset of OOP that can be imple-
mented efficiently on massively parallel SIMD accelerators. We call
it Single-Method Multiple-Objects (SMMO), because parallelism is
expressed by running a method on all objects of a type.

To make fast GPU programming available to domain experts
who are less experienced in GPU programming, we developed
DynaSOAr, a CUDA framework for SMMO applications. Dyna-
SOAr improves the usage of allocated memory with an SOA data
layout and achieves low memory fragmentation through efficient
management of free and allocated memory blocks with lock-free,
hierarchical bitmaps.
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1 Introduction
General-purpose GPU computing has long been a tedious job, re-
quiring programmers to write hand-optimized, low-level programs.
In an attempt to make GPU computing available to a broader range
of developers, our efforts are centered around bringing fast object-
oriented programming (OOP) to low-level languages such as CUDA
and C++.

OOP has a wide range of applications in high-performance com-
puting (HPC) but is often avoided due to bad performance [18].
Dynamic memory management (DMM), i.e., the ability/flexibility
of creating/deleting objects at any time, is one of the corner stones
of OOP. Programmers often have to go to great lengths to build
their own allocators or write their applications is a more convoluted
way due to slow DMM (e.g., [13]).

In recent years, fast, dynamic memory allocators have been
developed for GPUs [1, 9, 22]. However, while these allocators
often provide good raw (de)allocation performance, they miss key
optimizations for structured data, leading to poor data locality and
memory bandwidth utilization when accessing allocated memory.

1.1 Single-Method Multiple-Objects (SMMO)
We identified a class of HPC applications that can be expressed as
object-oriented programs and implemented efficiently on SIMD
architectures. We call this class Single-Method Multiple-Objects
(SMMO) because parallelism is expressed by running a method on
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all objects of a type (parallel do-all). Objects may be created/deleted
at any time within a parallel do-all operation.

SMMO is a broad class of problems1 with many real-world ap-
plications [21], such as simulations for population dynamics, (e.g.,
Sugarscape [8]), evacuations [13], wildfire spreading [19], finite
element methods or particle systems, to name just a few. SMMO
can also express BFS graph traversals and dynamic tree updates/
constructions such as in Barnes-Hut [4].

1.2 Object Allocation with Efficient Memory Access
We developed DynaSOAr [21], a CUDA framework for SMMO
applications. DynaSOAr consists of three parts:

1. A dynamic memory allocator based on concurrent, lock-
free, hierarchical bitmaps. Our allocator stores objects in a
Structure of Arrays (SOA) data layout.

2. An efficient parallel do-all operation. Such operations
spawn a CUDA kernel and control the assignment of ob-
jects to GPU threads.

3. An embedded C++ data layout DSL for object-oriented
programming with SOA layout, inspired by Ikra-Cpp [20].
This DSL allows us to implement DynaSOAr entirely in
C++/CUDA without a custom code generator/preprocessor.

DynaSOAr achieves significant speedups over state-of-the-art
GPU memory allocators by controlling both (1) data layout and (2)
data access.

Structure of Arrays (SOA) Layout SOA is a well-studied best
practice of SIMD programming. Compared to a traditional AOS
layout (Fig. 1a), an SOA layout (Fig. 1b) can increase memory band-
width and cache utilization when the same fields of multiple objects
are simultaneously accessed [11].

SIMD architectures achieve parallelism by running the same
processor instruction on a vector register. Even though recent GPUs
appear to have thousands of CUDA cores, the hardware actually
only has a few hundred physical cores, each operating on 128-byte
vector registers containing 32 float/int scalars2. Memory accesses
of a physical core (i.e., 32 consecutive GPU threads; warp in CUDA)
that fall into an aligned 128-byte address window are serviced with
efficient vector loads (memory coalescing). Getting data into and
out of vector registers is often the biggest bottleneck and peak
memory bandwidth utilization can be achieved only with memory
coalescing.

SOA can increase memory coalescing when accessing structured
data because values of the same field are stored together. We im-
proved the SOA layout in three ways:
• We built an embedded C++/CUDA DSL such that program-
mers can write code like in Fig. 1d instead of Fig. 1c.

1We implemented a few SMMO applications from different domains: https://github.
com/prg-titech/dynasoar/wiki/Benchmark-Applications

2We are focusing on recent NVIDIA architectures, but other architectures are similar.
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Body bodies[32000];

float Body_pos_x[32000];
float Body_pos_y[32000];
float Body_vel_x[32000];
float Body_vel_y[32000];
float Body_force_x[32000];
float Body_force_y[32000];
float Body_mass[32000];

(b) Structure of Arrays (SOA)(a) Array of Structures (AOS)
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struct Body {
  float pos_x, pos_y;
  float vel_x, vel_y;
  float force_x, force_y;
  float mass;
};
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(c) Hand-written SOA Code Example 

__device__ void move(int id) {
          /* Compute force, vel ... */
    pos_x[id] += Δt * vel_x[id];

    
  pos_y[id] += Δt * vel_y[id];
}

int main() { /* Run move() in par. on GPU */ }

SIMD: All threads perform this load in parallel.
Current NVIDIA GPUs coalesce loads into as 
few 128-byte vector loads as possible. In SOA, 
fewer vector loads are required to cover all 
pos_x values than in AOS.

class Body : public AllocT::Base {
  declare_types(Body, float, float /*, ... */)
  Field<Body, 0> pos_x;
  Field<Body, 1> pos_y; /* more fields */

  __device__ void move() {
    pos_x += Δt * vel_x;  pos_y += Δt * vel_y; }
};

int main() {
  allocator.parallel_do<&Body::move>(); }

(d) DynaSOAr: (b) and (c) + DSL + Dyn. Object Allocator 

class Body; using AllocT = Allocator<Body, 32000>;
__device__ AllocT allocator;

No object IDs
(... but pointers)

Inheritance OK

Figure 1. N-Body example: Excerpt of structure definition and Euler method time step (AOS/SOA/DynaSOAr).
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Figure 2. Block states. Initially, every block is free. Allocated blocks contain
only objects of a specific type T . To reduce fragmentation, new objects are
allocated in active blocks of the corresponding type.

• We developed the first GPU dynamic memory allocator
(C++ new/delete interface) with SOA performance charac-
teristics. Low fragmentation is key: If data is fragmented,
more vector accesses are needed for the same number of
bytes, reducing the benefit of SOA.
• Contrary to other systems such as Columnar Objects [15],
we support class inheritance without wasting memory.

1.3 Contributions
Our work contributes to the state-of-the-art as follows:
• The concept of and examples of SMMO applications.
• SOA Improvements: Embedded C++ DSL and subclassing.
• A dynamic memory allocator for GPUs with efficient
memory access and low fragmentation.
• A concurrent, lock-free, hierarchical bitmap data struc-
ture, based on atomic operations and retry loops.

2 The DynaSOAr System
DynaSOAr divides the heap into blocks of equal size in bytes (Fig. 3).
Every block contains only objects of the same C++ class/struct type
in SOA layout: one SOA array per field. Blocks of the smallest type
in the system3 always have a capacity (#object slots) of 64 and
determine the block size in bytes, and thus the number of blocks
M on the heap. Blocks of other types may have a smaller capacity
depending on the size of their type in relation to the smallest type.

CoalescedAccess Although this layout does not constitute a plain
structure of arrays as in Fig. 1b but multiple structures of arrays
(one per block), it has the same performance characteristics as long
as every SOA array is at least 128 bytes big (cache line and vector
register size). This is the case for block capacities of at least 32
(assuming 4 byte fields).
3All types must be pre-declared with the allocator (template arg. in 1st line of Fig. 1d).

Block States A 64-bit object allocation bitmap keeps track of allo-
cations. A block can be in one or more multistates (Fig. 2).
• free: The block is empty and does not contain any objects.
• allocated[T]: The block contains at least 1 object of type T .
No other types can be stored in this block.
• active[T]: The block contains objects of type T . It is not full
yet, i.e., it has space for at least one more object.
active[T]⇒ allocated[T].

Allocation and deallocation routines frequently have to lookup
blocks by state. For that reason, block states are indexed by bitmaps
of sizeM ; one bitmap per state.

Concurrency Due to concurrent operations of other threads, these
bitmaps can be temporarily inconsistent with the actual state of a
block. Designing lock-free algorithms is notoriously difficult [16]
and we carefully designed our algorithms such that they can detect
inconsistencies and retry if necessary.

Our allocator design has one key feature that makes this problem
more tractable: Apart from the data segment, every block has the
same structure. Object allocation bitmaps are always located at
the same offset within a block and the memory locations of blocks
are fixed. Therefore, our algorithms can use block state bitmaps to
quickly lookup blocks but then update object allocation bitmaps,
which are the single source of truth, with atomic operations. At this
linearization point [10], our algorithms can detect inconsistencies4.

2.1 Bitmap Operations
DynaSOAr uses large bitmaps for indexing block states. These
bitmaps provide a few basic operations.
• try_clear(pos): Atomically clear the bit at pos. If the bit was
already cleared, return false, otherwise true.
• clear(pos): Clear the bit at pos. This is identical to: while
(!try_clear(pos)) {}.
• Similarly: try_set(pos) and set(pos).
• try_find_set(): Find and return the position of a set bit or FAIL
if none was found (e.g., because the bitmap is inconsistent).
• clear(): Find a set bit and clear it. This is identical to: while
((i = try_find_set()) != FAIL && try_clear(i)) {}; return i;

All operations are thread-safe and can be invoked by threads
concurrently. try_clear(pos) and try_set(pos) are implemented with
atomic bit-wise OR/AND operations5. Atomic operations are gen-
erally slow, but became much faster with recent GPUs [5].

4Due to space limitations, we cannot give an exhaustive description of our algorithms
here, but we invite the interested reader to take a look at our full paper [21].
5Atomic operations return the original value in memory.
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Spring*[3][46] NodeBase::springs
float[46] NodeBase::pos_x
float[46] NodeBase::pos_y
float[46] Node::vel_x
float[46] Node::vel_y
float[46] Node::mass
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(no bitmaps for abstract class NodeBase)
(block is full,

i.e., not active)
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NodeBase*[64] Spring::n1
NodeBase*[64] Spring::n2
float[64] Spring::initial_length
float[64] Spring::stiffness
float[64] Spring::max_force
int[64] Spring::bfs_distance

data segment
(SOA arrays)
incl. inherited fields

(block is active)

Figure 3. Heap layout of a finite element method. DynaSOAr is a slab allocator [3]: Only objects of the same C++ type are stored in a block.

Algorithm 1: Allocator::allocate<T>() : T* GPU

1 repeat ▷ infinite loop if OOM

2 bid← active[T].try_find_set();
3 if bid = FAIL then ▷ slow path

4 bid← free.clear();
5 initialize_block<T>(bid);
6 allocated[T].set(bid);
7 active[T].set(bid);

8 alloc← get_block<T>(bid).reserve();
9 if alloc , FAIL then ▷ block filled up after line 2?

10 if alloc.state = FULL then ▷ allocated last obj. slot

11 active[t].clear(bid);

12 return make_pointer(bid, alloc.slot);

13 until false; ▷ select new block + retry;

2.2 Object Allocation
Alg. 1 gives a simplified overview of object allocation. This is a
thread-safe and entirely lock-free algorithm.

To keep memory fragmentation low, DynaSOAr allocates new
objects always in active blocks. These are blocks that already con-
tain some objects of the same type, but still have some vacancy.
Only if no active block could be found, a new block is initialized
(slow path).

This technique is in contrast to state-of-the-art GPU allocators,
which scatter new allocations in the heap (e.g., using hashing),
to reduce collisions and synchronization among threads [1, 22].
DynaSOAr requires more synchronization between threads, in
the form of atomic operations. This makes (de)allocations more
expensive. However, DynaSOAr’s allocation policy leads to much
lower fragmentation and denser allocations. This results in better
overall performance of SMMO applications on SIMD architectures.

2.3 Parallel Do-all
In DynaSOAr, we express parallelism of SMMO applications with
parallel do-all operations. Such operations spawn a CUDA kernel
and run a method in parallel for all objects of a type T . Objects
are assigned to GPU threads in such a way that the GPU can coa-
lesce field reads/writes of the this object6. This increases memory
bandwidth utilization and overall application performance.

6Field reads/writes of other objects do not benefit from additional memory coalescing.
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Figure 4. Compaction of allocated[T] array and assigning objects to GPU
threads. Assuming block capacity n = 64.

Before a CUDA kernel is launched, we precompute which objects
are processed by each GPU thread (Fig. 4) in two steps that can be
implemented efficiently on GPUs.

1. Generate an index array of set bits in allocated[T].
2. Filter out unused index values (stream compaction). Can be

implemented with a prefix sum algorithm [2].

If c is the capacity of blocks of type T , we assign c consecutive
threads to each allocated block of type T . Since these c threads
have consecutive IDs, they will run on the same 1–3 physical cores,
so accesses are coalesced; not necessarily perfectly coalesced but
better than in AOS. Not all blocks are entirely full, so some threads
will have no objects to process; this mechanism is nevertheless fast,
because we expect blocks to have a high average fill level since new
allocations are always performed in active blocks.

Inside a CUDA kernel, a thread can now quickly read its assigned
blocks from the filtered index array R and process the objects at
slot tid % c in these blocks, if they have an object allocated there.

2.4 Additional Optimizations
DynaSOAr employs optimizations in addition to SOA to speed up
allocations.

• Block bitmaps are hierarchical and updated with eventu-
ally consistent, lock-free algorithms, so that we can find
free blocks (try_find_set()) with a log. number of accesses.
• To reduce thread contention, we borrow allocation request
coalescing from XMalloc [12]: A leader thread allocates
objects on behalf of all threads in a warp.
• Efficient implementation and engineering efforts: We utilize
low-level optimizations such as int. intrinsics (e.g., Alg 2).
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Algorithm 2: Bitmap::try_clear(pos) : void GPU

1 cid← pos / 64;

2 offset← pos % 64;

3 mask← 1 << offset;

4 prev← atomicAnd(&container[cid], ∼mask);

5 success← (prev & mask) , 0;

6 ifsuccess ∧ has_nested ∧ popc(prev) = 1 then
7 nested.clear(cid);

8
population cnt.:
number of set bitsreturn success;

(1) clear

(2) clear

(3) clear

L0

L1

L2

b0
0

b1
3

Notation:

b0
1 ... b0

31C0
2 C0

3
(containers)(bits)

levelb index bit
Clevel

index container

... ...

Figure 5. Example: Hier. bitmap of size N = 32 with container size 4
(instead of 64). This example illustrates how (1) a clear(18) operation triggers
(2) a clear(4) operation in the nested bitmap, which triggers (3) a clear(1)
operation in the next nested bitmap.

3 Hierarchical Bitmaps
DynaSOAr uses hierarchical bitmaps to find find free and active
blocks with try_find_set() in Alg. 1. This is a key optimization
because block bitmaps can reach multiple megabytes in size and
checking every bit is too slow.

Data Structure A hierarchical bitmap of size N bits consists of
two parts: an array of size ⌈N /64⌉ of 64-bit containers (uint64_t),
and a nested bitmap of size ⌈N /64⌉ if N > 64. A container Cli
consists of bits bl64·i , ..., b

l
64·i+63 and is represented by one bit bl+1i

in the nested (higher-level) bitmap (Fig. 5). That bit is set if at least
one bit is set in the container.

bl+1i =
∨63

k=0
bl64·i+k (container consistency)

Bits in are changed with atomic operations. Higher-level bits
(and thus bitmaps) are eventually consistent7 with their containers.
Keeping both consistent all the time is difficult without locking,
because two differentmemory locations cannot be changed together
atomically. However, due to the design of the bitmap operations,
the bitmap is guaranteed to be in a consistent state when all bitmap
operations (of all threads) are completed. Bitmap operations retry
or give up (FAIL) to handle temporary inconsistencies.

clear(pos) with Atomics Alg. 2 illustrates how to clear a spe-
cific bit. We clear the bit with an atomic operation (Line 4). If this
operation actually changed the bit (success) and cleared the last
bit of the container, it is this thread’s responsibility to clear the
respective bit in the nested bitmap. Since the bitmap may be in an
inconsistent state, we have to retry until the bit was cleared, thus
clear(pos) instead of try_clear(pos) in Line 7.

7This is a key difference from other lock-free hier. data structures such as SNZI [7],
which have stronger runtime consistency guarantees and require complex algorithms.

4 Evaluation
We evaluated the running time (Fig. 7) and memory usage (Fig. 8)
of 8 SMMO applications (Fig. 6) with different allocators on an
NVIDIA Titan Xp GPU (12 GB device memory). We compared Dy-
naSOAr with two state-of-the-art GPU allocators (mallocMC [22],
halloc [1]) and with another baseline allocator BitmapAlloc that
we developed. BitmapAlloc allocates objects in a large array and
uses a bitmap to find empty slots. If possible, we also implemented
variants without any dynamic allocation (Baseline AOS/SOA).

Running Time We break down application running times by the
amount of time spent on parallel enumeration (i.e., Fig. 4) and the
remaining running time. Other allocators do not support parallel
do-all out of the box, so we had to reimplement it for the bench-
marks. With higher engineering efforts we could likely build a more
efficient implementation. For a fair comparison of allocators, we
should not take parallel enumeration time into account.

All applications except for sugarscape benefit from SOA (com-
pare baselines AOS/SOA).DynaSOAr always exhibits better perfor-
mance than the other allocators. The CUDA profiler indicated that
this is due to better memory coalescing (SOA) in most cases. nbody
and collision use little memory, so these applications benefit also
from better L1/L2 cache utilization due to DynaSOAr’s compact
allocation policy.

Space Efficiency To measure how efficient the allocators manage
heap memory, we gave every allocator the same amount of memory
and experimentally determined the maximum problem size before
the application crashes with an out-of-memory error.

MallocMC and Halloc use a hashing approach to find empty
memory locations during allocations. This requires little thread
synchronization and usually results in fast allocations. However,
the performance of every hashing approach decreases with the
number of collisions. We believe this is why MallocMC and Halloc
can utilize only a much smaller fraction of the heap compared to
DynaSOAr and BitmapAlloc.

Many applications (e.g., traffic) cannot be implemented space-
efficiently without dynamic allocation because the number of run-
time objects of a type cannot be predicted accurately or changes
over time.

5 Conclusion
DynaSOAr is a CUDA framework for SMMO applications on GPUs.
The main insight of our work is that optimizing only for fast
(de)allocations is not enough. Optimizing the access of allocated
memory can result in much higher speedups, because memory
access is the biggest bottleneck of many GPU applications. Dyna-
SOAr achieves this by controlling both data layout (SOA) and data
access patterns (parallel do-all), combined with a dense allocation
policy that is optimized with hierarchical bitmaps.
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