
Ikra-Cpp: A C++/CUDA DSL for Object-Oriented
Programming with Structure-of-Arrays Layout

Matthias Springer
Tokyo Institute of Technology
matthias.springer@acm.org

Hidehiko Masuhara
Tokyo Institute of Technology

masuhara@acm.org

Abstract
Structure of Arrays (SOA) is a well-studied data layout tech-
nique for SIMD architectures. Previous work has shown that
it can speed up applications in high-performance computing
by several factors compared to a traditional Array of Struc-
tures (AOS) layout. However, most programmers are used to
AOS-style programming, which is more readable and easier
to maintain.

We present Ikra-Cpp, an embeddedDSL for object-oriented
programming in C++/CUDA. Ikra-Cpp’s notation is very
close to standard AOS-style C++ code, but data is layed out
as SOA. This gives programmers the performance benefit
of SOA and the expressiveness of AOS-style object-oriented
programming at the same time. Ikra-Cpp is well integrated
with C++ and lets programmers use C++ notation and syn-
tax for classes, fields, member functions, constructors and
instance creation.

CCS Concepts • Software and its engineering → Ob-
ject oriented languages; Data types and structures; Parallel
programming languages;

Keywords C++, CUDA,Object-oriented Programming, SIMD,
Structure of Arrays, Template Metaprogramming

ACM Reference Format:
Matthias Springer and Hidehiko Masuhara. 2018. Ikra-Cpp: A C++/
CUDA DSL for Object-Oriented Programming with Structure-of-
Arrays Layout. InWPMVP’18 : Workshop on Programming Models
for SIMD/Vector Processing, February 24–28, 2018, Vienna, Austria.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3178433.
3178439

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
WPMVP’18 , February 24–28, 2018, Vienna, Austria
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.
ACM ISBN 978-1-4503-5646-6/18/02. . . $15.00
https://doi.org/10.1145/3178433.3178439

1 Introduction
Object-oriented programming (OOP) is a popular language
paradigm in general-purpose computing, but not widely-
used in high-performance SIMD computing due to insuffi-
cient compiler support. Object-oriented code is often several
factors slower than tuned, non object-oriented code. In this
paper, we present Ikra-Cpp, a DSL for object-oriented high-
performance computing embedded in C++/CUDA. Ikra-Cpp
allows programmers to write OOP-style code while, behind
the curtain, storing data in a Structure of Arrays (SOA) rep-
resentation; a well-studied best practice for SIMD architec-
tures.

Why Object-oriented Programming? OOP is a well-estab-
lished language paradigm: It can help programmers write
more structured, modular, understandable code [23] with
great expressiveness. There are numerous problems that can
be expressed elegantly as object-oriented programs. For ex-
ample, it is straightforward to model problems with real
world entities such as particle simulations or agent-based
simulations [8, 33] (e.g., traffic simulations [26]) in an object-
oriented way. Furthermore, sometimes we want to calculate
properties of a network of real-world entities (e.g., rank-
ing/reachability/cluster detection in social networks). Previ-
ous work has studied (partly object-oriented) high-perfor-
mance implementations of such problems [9, 17, 22, 30].
In this paper, we focus on the most basic OOP function-

ality in C++: Classes with member fields and (non-virtual)
methods, instance creation with the new keyword and class
pointer types. Inheritance/subclassing is not in the scope of
this paper and future work.

Why Structure of Arrays? Unfortunately, many perfor-
mance-critical applications are unacceptably slow when ex-
pressed in an object-oriented way due to the way virtually
any modern compiler structures objects in main memory:
Arrays of Structures (AOS). In AOS, every object is stored as
a contiguous chunk of data. This is often not ideal for SIMD
architectures, which operate on a vector of values.
In Structure of Arrays (SOA; column stores in database

systems), all values of a field are grouped and stored contigu-
ously across the entire object space. SOA is a well-studied,
established data layout [4, 19, 20, 24, 28, 31, 39] and CUDA
best practice which can save on memory access time (mem-
ory coalescing [16]), maximize cache usage and allow for
vectorization via SIMD instructions [2, 14, 15].

https://doi.org/10.1145/3178433.3178439
https://doi.org/10.1145/3178433.3178439
https://doi.org/10.1145/3178433.3178439

WPMVP’18 , February 24–28, 2018, Vienna, Austria Matthias Springer and Hidehiko Masuhara

1 class Body {

2 public:
3 double pos_x = 0.0;

4 double pos_y = 0.0;

5 double vel_x = 1.0;

6 double vel_y = 1.0;

7 Body(double x, double y)

8 : pos_x(x), pos_y(y) {}

9 void move(double dt) {

10 pos_x = pos_x + vel_x * dt;

11 pos_y = pos_y + vel_y * dt;

12 }

13 };

14 void create_and_move() {

15 Body* b = new Body(1.0, 2.0);

16 b->move(0.5);

17 assert(b->pos_x == 1.5);

18 }

(a) C++ Class (AOS Layout)

class Body : public SoaLayout<Body, 50> {

public: IKRA_INITIALIZE_CLASS

double_ pos_x = 0.0;

double_ pos_y = 0.0;

double_ vel_x = 1.0;

double_ vel_y = 1.0;

Body(double x, double y)

: pos_x(x), pos_y(y) {}

void move(double dt) {

pos_x = pos_x + vel_x * dt;

pos_y = pos_y + vel_y * dt;

}

}; IKRA_HOST_STORAGE(Body);

void create_and_move() {

Body* b = new Body(1.0, 2.0);

b->move(0.5);

assert(b->pos_x == 1.5);

}

(b) Ikra-Cpp: AOS Syntax, but SOA Layout

double Body_pos_x[50]; double Body_pos_y[50];

double Body_vel_x[50]; double Body_vel_y[50];

int Body_inst = 0;

int new_Body(double x, double y) {

int id = Body_inst++;

Body_pos_x[id] = x; Body_pos_y[id] = y;

Body_vel_x[id] = Body_vel_y[id] = 1.0;

return id;

}

void Body_move(int id, double dt) {

Body_pos_x[id] += Body_vel_x[id] * dt;

Body_pos_y[id] += Body_vel_y[id] * dt;

}

void create_and_move() {

int b = new_Body(1.0, 2.0);

Body_move(b, 0.5);

assert(Body_pos_x[b] == 1.5);

}

(c) Hand-written SOA Layout in C++

Figure 1. Comparison of OOP Notation for a simplified 2D N-Body Simulation. Programmers want the notation of (a) but the performance
of (c). With Ikra-Cpp, they get the performace of (c) with the notation of (b). A maximum of 50 objects are supported in this example.

Maintaining a SOA layout manually is troublesome. SOA
code (Figure 1c) is less readable and expressive than AOS-
style code (Figure 1a): Native OOP language constructs such
as the new keyword or member access notation for fields
cannot be used; instead, programmers must keep track of ob-
ject allocations by themselves, implement constructor logic
in global functions, and access field values through arrays.
Methods require an explicit this parameter, and objects are
referenced with integer IDs instead of class pointers.

Why a Library/DSL? Ikra-Cpp is a lightweight C++ li-
brary/embedded DSL [11] (around 2500 LoC) implemented
entirely in C++ with template metaprogramming, operator
overloading, helper classes and preprocessor macros. Our
goal is to provide a mechanism that lets programmers write
object-oriented AOS-style code (Figure 1b) while transpar-
ently laying out objects as SOA. Ikra-Cpp works with every
modern C++14 compiler and the Nvidia CUDA Toolkit 9.0 or
higher (in GPU mode). We originally designed Ikra-Cpp as
an intermediate representation for Ikra-Ruby [32], a GPGPU
library with object support for Ruby, but it can also be used
standalone by C++/CUDA programmers, which is the focus
of this paper. Ikra-Cpp could be implemented as a compiler
extension. To the best of our knowledge, no such extension
exists for a widely used language. We believe that this is due
to the high engineering effort of writing a new compiler or
such an invasive compiler extension [21].

Contributions andOutline Themain contribution of this
paper is twofold. First, to the best of our knowledge, Ikra-
Cpp is the first C++ tool for SOA data layout that supports

OOP features, most notably member function calls and con-
structors. Second, Ikra-Cpp supports many SOA features
supported by projects discussed in the related work section
(e.g., referencing objects with class/struct pointers instead
of IDs; c.f. ispc), but with standard C++ syntax (c.f. SoAx)
and without relying on an external tool or extending the
language (c.f. ispc); everything is implemented in C++.

The remainder of this paper is structured as follows. Sec-
tion 2 gives an overview of the architecture of Ikra-Cpp
and describes its basic functionality. Section 3 explains how
data is layed out, how addresses are computed and how a
seamless notation can be achieved in C++. Sections 4 and 5
present first benchmarks and discuss related work. Finally,
Sections 6 and 7 describe future work and conclude. The
Ikra-Cpp source code and all examples are available online1.

2 Language Overview
In this section, we describe the basic functionality of Ikra-
Cpp, focusing on host (CPU) code.

2.1 Notation
A class that is layed out as SOA is called a SOA class and
its instances are called SOA objects. In Ikra-Cpp, every SOA
class (Figure 1b) must inherit from SoaLayout, a class that
provides useful helper methods and type aliases. The maxi-
mum number of instances of a SOA class is a compile-time
constant and template parameter of SoaLayout (Line 1).
SOA objects can only be created with the new keyword

and must be referenced with pointers. Stack/static allocation

1https://github.com/prg-titech/ikra-cpp/tree/benchmark-cgo2018/

https://github.com/prg-titech/ikra-cpp/tree/benchmark-cgo2018/

Ikra-Cpp: A C++/CUDA DSL for OOP with SOA WPMVP’18 , February 24–28, 2018, Vienna, Austria

execute(&Body::move, /*dt=*/ 0.1);

(a) Execution on all Body objects.

std::array<Body*, 3> bodies =

{{ Body::get(1), Body::get(5), Body::get(12) }};

execute(bodies, &Vertex::move, /*dt=*/ 0.1);

(b) Execution on a collection of Body objects, where the collection can be a
std::array or a std::vector.

Body* start = Body::get(1);

int num = Body::size() + 1;

execute(start, num, &Vertex::move, /*dt=*/ 0.1);

(c) Execution on a collection of Body objects, given as start pointer and
number of objects. In this particular example, all objects are selected.

Figure 2. Example: Running Body::move on multiple objects.

is not allowed, because the fields of an object are not stored
as a consecutive chunk of data as in a traditional AOS lay-
out. Programmers must use special SOA field types for field
declarations, e.g., double_ (Lines 3–6) instead of double.

Supported C++ OOP Features Ikra-Cpp currently sup-
ports many but not all OOP features of C++. This para-
graph gives an overview of the most important ones. SOA
classes are defined with standard C++ notation; templatiza-
tion and inheritance will be possible in future versions of
Ikra-Cpp. Member fields must be declared with SOA field
types and must have primitive type (currently: bool, char,
double, float, int). Pointers (of arbitrary base type) and
non-primitive types are also possible, but not discussed in
this paper2. SOA classes can have non-virtual member func-
tions that may be templatized. Constructors (with and with-
out field initializers) are supported. Member functions and
constructors may be overloaded. Instance creation is only
supported with the new keyword. Given a SOA object pointer,
members can be accessed with the C++ member of pointer
(arrow) operator from within and outside a class (Lines 10,
11, 16, 17).

2.2 Executor
The executor API allows programmers to perform an oper-
ation on a collection of objects of same type. Its usage is
optional and programmers can achieve the same functional-
ity manually with hand-written C++ loops or CUDA kernels.
The benefits of the executor API are more compact code,
abstraction from platform-specific parallelization constructs
(e.g., programmers do not have to write CUDA kernels), and
easy switching from CPU execution to GPU execution.

Do-All Executor The most basic operation of the executor
API is method execution: Given a collection of objects of
2SOA field types similar to double__ in Figure 5 can be defined for other
(non-primitive) types as well.

float Body::distance(float x, float y) {

float dx = pos_x - x; float dy = pos_y - y;

return std::sqrt(dx * dx + dy * dy);

}

auto reducer = [] (float acc, float next) {

return acc + next;

}

float sum_dist = execute_and_reduce(

reducer, &Body::distance, /*x=*/ 5.0, /*y=*/ 4.0);

float avg_dist = sum_dist / Body::size();

Figure 3. Example: Computing the average distance of all bodies
from a given point in space. This listing defines a distance method,
a reducer function that accumulates distance values and performs
the execute and reduce parts on the host.

same type and a method name, execute the method for every
object (Figure 2). In host mode, this done sequentially, but
future versions of Ikra-Cpp may support thread pool exe-
cution. In device mode, Ikra-Cpp launches a CUDA kernel
with (currently) one thread per object. Only methods that are
annotated with the __device__ keyword can be executed
in device mode.

Execute and Reduce Ikra-Cpp provides an API for com-
bined execute and reduce operations. For example, this is use-
ful for termination detection of iterative algorithms where
the termination criteria depends on a property of multiple ob-
jects. One concrete example is the standard, parallel, frontier-
based breadth-first search algorithm [7] terminates if no new
vertex is explored in an iteration, i.e., the frontier for the next
iteration is empty. This can be written as a conjunction of
boolean “Am I part of the frontier?” vertex values, which can
be reduced to determine if the algorithm should terminate.
In the N-Body example from this paper, execute and reduce
can be used to calculate the average distance of all bodies
from a given point in space (Figure 3).

The reduction part is not supported in device mode yet and
performed on the host. Future versions of Ikra will perform
parallel reductions with shared memory [18].

3 Implementation
Ikra-Cpp is based on four ideas: (a) Allocate a large storage
buffer (char array) in which all data is stored (generated
by IKRA_HOST_STORAGE). (b) Assign unique integer IDs to
objects. (c) Reference objects with “fake pointers” that en-
code an object ID. (d) Override C++ operators to decode IDs,
calculate addresses and acccess data in the storage buffer.

In this section, we explain those steps in more detail, using
a more verbose, but less convoluted notation. The example
class in Figure 4 is identical to the the one in Figure 1b (with-
out constructor), but with expanded preprocessor macros.

WPMVP’18 , February 24–28, 2018, Vienna, Austria Matthias Springer and Hidehiko Masuhara

class Body : public SoaLayout<Body> {

const static int kMaxInst = 50;

const static int kObjSize = 4 * 8; four doubles = 32 bytes

static char storage[kMaxInst * kObjSize];

static int size = 0;

double__<1, 0> pos_x = 0.0; field index = 1, offset = 0
double__<2, 4> pos_y = 0.0; field index = 2, offset = 4
double__<3, 8> vel_x = 0.0; field index = 3, offset = 8
double__<4, 12> vel_y = 0.0; field index = 4, offset = 12

static Body* get(int id); Calculate Address

void* operator new() { return get(++size); }

void move(double dt) {

pos_x = pos_x + vel_x * dt;

pos_y = pos_y + vel_y * dt;

}

};

Figure 4. Example: Macro-expanded Body class from a Figure 1b.
All objects are stored inside storage. Fields must be declared with
special data types like double__.

3.1 Overview
SOA object pointers (i.e., the result of a new expression) do
not necessarily point to allocated data but are used to encode
object IDs (“fake pointers”; similar to tagged pointers where
the tag is the entire pointer). All objects of a SOA class C
have a unique ID3 between [1;maxInst (C)]: E.g., calling new
C for the first time returns a C* pointer that encodes ID 1.
SOA field types behave like normal C++ types in most

cases, but access data at a location inside the storage buffer.
In particular, they must support the following operations.
• Reading Value: A double__ value can be converted to
a double value without an explicit typecast (implicit
conversion operator4, Figure 5, Line 12).
• Writing Value: A double value can be assigned to a
double__ field (assignment operator, Line 13).
• Method Call: For non-primitive types (does not apply
to double), a method call on a SOA field is forwarded
to the object at the data location (member of pointer
“arrow” operator5, Line 14).

SOA field types are defined in SoaLayout as template
instantiations of Field_ (Figure 5, Lines 3–6). This class pro-
vides the necessary operator implementations and calculates
the address inside the storage buffer at which the field value
of a certain object can be found (Line 15). In the most basic
case, given the address of a field object this, the address of
field C::f can be computed as follows, where id is a function
that decodes the object ID from a field object address.

3ID 0 is reserved for null references.
4The auto keyword is not supported. E.g., a field value cannot be assigned
to a variable declared as auto without an explicit type cast.
5Note for experienced C++ programmers: This is similar to how
std::unique_ptr is implemented.

1 template<class Self> Template Parameter “Self”: CRTP [6]
2 class SoaLayout {

3 template<int Index, int Offset>

4 using int__ = Field_<int, Index, Offset, Self>;

5 template<int Index, int Offset>

6 using double__ = Field_<double, Index, Offset, Self>;

7 };

8 template<typename T, int Index, int Offset, class Owner>

9 class Field_ {

10 Field_() {}

11 Field_(const T value) { this->operator=(value); }

12 operator T&() const { return *data_ptr(); }

13 void operator=(T value) { *data_ptr() = value; }

14 T* operator->() const { return data_ptr(); }

15 T* data_ptr() const; Calculate Address
16 };

Figure 5. Basic Implementation of Ikra-Cpp. SOA classes are sub-
classes of SoaLayout and only Field_ instantiations may be used
as types for SOA fields.

addr (this, C::f) = storage

+maxInst (C) · offset (C::f)

+ (id (this) − 1) · sizeof (C::f)

The first two lines in the equation compute the beginning
of the SOA array storing all values of C::f. The third line
computes the offset into that array. How exactly object IDs
are encoded in SOA object addresses is determined by the ad-
dressing mode. Ikra-Cpp supports three different addressing
modes, one of which must be chosen at compile time: Zero
Addressing and two variants of Valid Addressing. The former
one is more space-efficient but relies on non-standard C++
constructs, so it might not work with some compilers6.

3.2 Addressing Modes
This section gives an overview of various addressing modes.
Zero addressing and storage-relative zero addressing are
implemented in Ikra-Cpp. In accordance with the C++ zero
overhead principle [34], zero addressing is the default mode.

3.2.1 Zero Addressing
In this addressing mode (Figures 6, 7), an object of class C
with ID i is referenced with a C* pointer pointing to mem-
ory address i (e.g., obj10 has address 0xa). Field values are
grouped by field and stored from the beginning of the storage
buffer. No field values are stored for object 0 (null pointer).
Given a C* pointer obj, the memory location of field value
C::f, i.e., &obj->f, is calculated as follows. Compile-time
constants are in blue.

6We verified that it works with g++ 5.4.0, clang 3.8.0 and CUDA 9.0.

Ikra-Cpp: A C++/CUDA DSL for OOP with SOA WPMVP’18 , February 24–28, 2018, Vienna, Austria

NULL &obj1

storage

obj1.field1 obj2.field1

...

objmaxInst.field1 obj2.field1

...

objmaxInst.fieldnumFields

&obj2 &obj3

...
0x00

(unallocated memory)

object addresses
&objmaxInst

data segment

Figure 6. Storage Buffer Layout in Zero Addressing. Boxes in the
upper part are 1 byte in size and used as SOA object addresses.
Boxes in the data segment contain field values.

1 Body* Body::get(int id) {

2 return reinterpret_cast<Body*>(id)
3 }

4 template<typename T, int Index, int Offset, class Owner>

5 T* Field_<T, Index, Offset, Owner>::data_ptr() {

6 Owner* obj = reinterpret_cast<Owner*>(this);
7 return reinterpret_cast<T*>(Owner::storage
8 + Offset * Owner::kMaxInst - sizeof(T)
9 + sizeof(T) * reinterpret_cast<uintptr_t>(obj));
10 }

Figure 7. Address Computation in Zero Addressing Mode.

addrzero (obj, C::f) = storage

constant +maxInst (C) · offset (C::f)

variable − sizeof (C::f)

+ obj · sizeof (C::f)

Since the storage buffer is statically allocated, the first
three parts of the address calculation are compile-time con-
stants and the fourth part is strided memory access. After
constant folding, this is identical to a hand-written SOA lay-
out with statically allocated field arrays; the address of field
C::f of an object with ID i , i.e., C_f[i], is as follows.

addrmanual (i, C::f) = &C_f[0]

+ i · sizeof (C::f)

One crucial assumption of zero addressing is that the size
of the SOA class and the size of Field_ instantiations are
zero. Therefore, the address of a SOA object is equal to the
addresses of all its fields7, which we take advantage of in the
definition of data_ptr (Figure 7, Line 6). Second, this allows
us to use the new keyword for instance creation, even though
it zero-initializes all memory before calling a constructor8.
The size of a class or struct should be greater than zero (even
if empty) according to the C++ standard [12], but many
compilers can be instructed to use a size of zero. If this is
7E.g., for a Body* b: b = &b->pos_x = &b->pos_y = ...
8Zero-initializing a memory segment of zero bytes is a no operation, even if
the segment starts at a bogus memory address (“fake pointer”).

object addresses field paddingstorage

...
0x4000

...
0x4000 + M + 1

obj. ID

N
U

LL 1 2

this
(obj. ID,
 field ID)

(1
, 1

)
(2

, 1
)

(1
, 2

)

3

(3
, 1

)
(2

, 2
)

(1
, 3

)

4 ...

... ...

n/
a

n/
aM

(M
, 1

)
(M

-1
, 2

)
...

(M
-N

, N
)

(M
, 2

)
(M

-2
, 3

)
...

(M
-N

+1
, N

-1
)

(M
, 3

)
(M

-3
, 4

)
...

(M
-N

+2
, N

-2
)

n/
a

...

...

...

n/
a

(M
, N

)

data segment
(same as in

zero addr. mode)
0x4000 + M + 1 + N

M = maxInst(C)
N = numFields(C)

(SOA field
address)

Figure 8. Address Computation in Storage-relative Zero Address-
ing. The table lists all SOA fields that share a certain address. E.g.,
0x4003 is the address of obj3.field1, obj2.field2 and obj1.field3. Note
that this is not where field values are actually stored. Such addresses
are computed by data_ptr according to formula addrvalid (this, f).

not supported by a compiler, either valid addressing or a
different mechanism for instance creation must be used.

3.2.2 Valid Addressing Mode
Since zero addressing does not conform to the C++ standard,
Ikra-Cpp provides a different addressing mode. In valid ad-
dressing, the C++ size of every SOA field is one byte (e.g.,
sizeof(double_) = 1), consequently the C++ size of every
SOA object is numFields bytes. In order to support the new
keyword, the address of a SOA object must then point to
valid (allocated) memory; thus the name valid addressing.
The challenge of valid addressing is to add an as small as pos-
sible amount of padding (wasted memory) such that no data
is overwritten by zero initialization. Programmers should
use zero addressing if supported by their compiler, since it
does not waste any memory. Even though we do not have
measurements for valid addressing yet, we expect the same
runtime performance as in zero addressing, because address
computation is in both cases reduced to strided memory
access after constant folding.

Storage-relative ZeroAddressing In this addressingmode,
an object of class C with ID i is referenced with a C* pointer
pointing to ith byte of the storage buffer (Figure 8). E.g., if
the storage buffer is allocated at address 0x4000, then the
address of obj3 is 0x4003. The data segment, where field
values are stored, is identical to the one in zero addressing
and starts at offset padding = maxInst(C)+1+numFields(C),
i.e., padding many bytes are wasted in this addressing mode.
In general, the memory location of a field C::f of object
with address obj is then calculated as follows. Note that the
formula is identical to the one in zero addressing, except for
the offset of the data segment and the ID computation.

WPMVP’18 , February 24–28, 2018, Vienna, Austria Matthias Springer and Hidehiko Masuhara

addrvalid (obj, C::f) = storage

data segment offset +maxInst (C) + 1 + numFields(C)

+maxInst (C) · offset (C::f)

− sizeof (C::f)

ID computation + (obj − storage) ·sizeof (C::f)

Since address computation is done inside SOA field classes
(Field_, not SoaLayout), we have to express the above for-
mula in terms of the address (this pointer) of a SOA field
instead of the object address obj. The address of a SOA object
obj inside of field C::f is defined as obj = this−index (C::f)+
1, where index (C::f) is the field index of C::f. E.g., the ad-
dress of the third field vel_x of Body1 is 0x4003 in Figure 8
(striped box). Consequently, obj = 0x4003 − 3 + 1 = 0x4001.
This object address can be used in the above formula. Putting
both definitions together, the memory location of a field C::f
with respect to its this pointer is then calculated as follows.

addrvalid (this, C::f) = storage

+ maxInst (C) + 1 + numFields(C)

+ maxInst (C) · offset (C::f)

− sizeof (C::f) · (index (C::f) + storage)

+ this · sizeof (C::f)

The formula above was rearranged to keep the number
of terms small. After constant folding, the address of a field
value can be calculated with the same instructions as in zero
addressing mode.

4 Preliminary Performance Evaluation
We evaluated Ikra-Cpp on a computer with an Intel Core
i7-5960X CPU (4x 3.00 GHz), 32 GB RAM and an Nvidia
GeForce GTX 980 GPU, a 64-bit Ubuntu 16.04.1, gcc 5.4.0 and
the Nvidia CUDA Toolkit 9.0.176 in zero addressing mode.

We benchmarked an iterative application of Body::move
for all bodies (Figure 2a in a loop)9. The number of iterations
was chosen such that every program ran for at least 5 sec.
We calculated the average running time per iteration and
report the minimum time out of 12 program runs.

Running Time Figures 9 and 10 show the running time
on CPU and GPU. The upper subfigure shows the average
running time of one entire iteration and the lower subfigure
shows the average running time for a single Body instance.

In host mode, Ikra-Cpp’s performance is almost identical
to hand-written SOA code. AOS-32 is variant of AOS where
16 supplemental double fields were added to the Body class,
similarly to the SoAx benchmark section [10]. We can think
9This benchmark is quite simple, but it clearly isolates the overheads of
Ikra-Cpp, specifically address computation.

102 103 104 105 106

10 8

10 7

10 6

10 5

10 4

10 3

10 2

To
ta

l R
un

ni
ng

 T
im

e
/ I

te
ra

tio
n

(s
ec

.)

Intel Core i7-5960X

Ikra-Cpp
Hand-written SOA
AOS-32
AOS

102 103 104 105 106

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
v
g
.
R

u
n
n
in

g
 T

im
e
 /

 B
o
d
y
 (

se
co

n
d
s)

1e 8

Intel Core i7-5960X

Ikra-Cpp

Hand-written SOA

AOS

AOS-32

L1 Cache

L2 Cache

L3 Cache

Figure 9.HostMode Running Time in Seconds. The x axismeasures
the number of Body instances.

105 106

10 5

10 4

10 3

To
ta

l R
un

ni
ng

 T
im

e
/ I

te
ra

tio
n

(s
ec

.)

Nvidia GeForce GTX 980 (4GB)

Ikra-Cpp
Hand-written SOA
AOS

105 106

1

2

3

4

5

A
v
g
.
R

u
n
n
in

g
 T

im
e
 /

 B
o
d
y
 (

se
co

n
d
s)

1e 10

Nvidia GeForce GTX 980 (4GB)

Ikra-Cpp

Hand-written SOA

AOS

1e 10

Kernel invocation overhead
dominates running time

Figure 10. Device Mode (CUDA) Running Time in Seconds. The x
axis measures the number of Body instances.

Ikra-Cpp: A C++/CUDA DSL for OOP with SOA WPMVP’18 , February 24–28, 2018, Vienna, Austria

of such fields as additional properties of a body (e.g., mass or
radius) that are not utilized in this particular computation.
The AOS-32 graph of the lower subfigure clearly shows the
effect of the L1, L2, L3 caches (32KB, 256KB, 20MB).
The performance difference in device mode is due to a

higher kernel invocation overhead in Ikra-Cpp. More than
10000 iterations (kernel invocations) are performed for small
problem sizes. With a larger number of bodies, we get closer
to hand-written SOA code, because of fewer iterations.

Code Generation We verified that the generated binary
code for reading/writing a single field from a SOA object is
identical in Ikra-Cpp and hand-written SOA (gcc and clang).
This shows that modern compilers can constant-fold the
complex address computations in Ikra-Cpp.
Unfortunately, this is not always the case for other com-

piler optimizations. One example is automatic loop vectoriza-
tion. In hand-written SOA code, gcc and clang vectorize the
loop that calls Body::move for every Body instance. How-
ever, only gcc performs the equivalent loop vectorization
with Ikra-Cpp. Clang is able to apply optimizations like loop
unrolling but considers the operations involved in address
computation10 as potentially “dependent” memory opera-
tions and thus unsafe for vectorization.

There are three approaches to solve this problem. First, we
can try rewriting the address computation part of Ikra-Cpp,
in an attempt to give the compiler additional hints that trig-
ger optimizations. This approach is fragile and could break
at any time. Second, code can be vectorized manually, either
with C++ SSE intrinsics or with a vectorization framework
like Sierra [14, 15]. Considering that real applications, which
exhibit code that is more complex than our example here,
cannot be automatically vectorized (yet) with today’s compil-
ers, even if written in SOA style, this approach seems feasible
to us. Third, Ikra-Cpp could be implemented as a compiler
extension, which is the cleanest and most stable solution.
We describe this approach in the context of the Intel ispc
Compiler in more detail in Section 5.

5 Related Work
The AOS-SOA tradeoff is a well-known problem and has
been studied in previous work in the context of C structs.
To the best of our knowledge, there is no system that pro-
vides an AOS-like programming style for object-oriented
programming with an implicit SOA data layout.
Homann and Laenen developed SoAx [10], a C++ library

for AOS-style C/C++ programming with implicit SOA layout.
Their implementation is based on preprocessor macros and
template metaprogramming. SoAx does not support OOP
concepts like classes or methods. SOA struct types are de-
fined using std::tuple instantiations and a helper macro
10The problem is pointer casting. In the simplest case, an expression like
array[reinterpret_cast<uintptr_t>(id)], where id is a pointer en-
coding an integer array offset is already considered unsafe.

that defines every SOA array separately. Objects field values
can only be accessed through a getter method of a SOA con-
tainer object, which takes an object ID as argument, and not
through SOA pointers. While such code is less expressive,
it has two benefits: First, such code is easier to optimize for
compilers than Ikra-Cpp code because it does not require
decoding an object ID from a pointer. Second, it allows pro-
grammers to create multiple containers, each of which has
its own ID range for objects.

Array of Structures eXtended (ASX) [35] is a library similar
to SoAx. Objects in ASX can be allocated in an ASX contain-
ers and also on the stack (as single objects). ASX containers
support both SOA and AOS data layout, one of which must
be chosen as a template parameter.

The Intel SPMD Program Compiler (ispc) [3, 25] is an exper-
imental C compiler with language features for better SIMD
support. Among other features, it can layout an array of C
structs in a hybrid SOA layout (also called Array of Structures
of Arrays (AoSoA) [36, 38] or Tiled AOS [13]). If a struct type
is annotated with the soa<N> keyword and used to declare
an array (where N should be the SIMDwidth), then the array
is layed out as hybrid SOA with a SOA length of N . Array
elements can be accessed with the usual C syntax. Further-
more, it is possible to take the address of a SOA object and
fields can be accessed using a SOA object pointer. From that
perspective, ispc’s functionality is very similar to Ikra-Cpp.
We are not sure how that functionality is implemented in-
ternally and it would interesting to see how easily ispc can
be extended to support OOP concepts like methods.

6 Future Work
There are two main tasks that must be solved in future ver-
sions of Ikra. First, Ikra-Cpp should support inheritance and
virtual functions to take full advantage of object-oriented
programming. To that end, SOA classes with virtual func-
tions need a virtual method table (vtable) pointer SOA array.
The vtable pointer can be seen as the first field. In the cur-
rent implementation approach, this can only be done with
first field addressing, because C++ compilers assume that an
object pointer points to the beginning of an object, where
the vtable pointer is stored.
Second, Ikra-Cpp must be tested with a wider variety of

compilers, platforms and compiler options. At the moment,
it seems like automatic loop vectorization is the only op-
timization affected by Ikra-Cpp, and we have yet to find
a workaround in clang. While performance DSLs [1, 5, 27,
29, 37] are usually limited to a single domain, Ikra-Cpp ad-
dresses memory layout strategies and is applicable to a wide
range of domains. This raises the question if Ikra-Cpp’s func-
tionality should better be implemented as part of a compiler
like ispc11, which could potentially solve such optimization
issues.

11ispc does not support OOP features like classes andmethods, yet (01/2018).

WPMVP’18 , February 24–28, 2018, Vienna, Austria Matthias Springer and Hidehiko Masuhara

7 Summary
We presented a first implementation of Ikra-Cpp, a C++/
CUDA DSL for object-oriented programming. Ikra-Cpp al-
lows programmers to write object-oriented code in AOS
notation, while data is layed out as SOA for better perfor-
mance. SOA object members are always accessed through
pointers. How exactly an object ID is encoded in a pointer
is determined by the addressing mode. Our main insights
are that (a) object ID decoding and field address computa-
tion can be done efficiently after constant folding and (b)
an AOS-style notation can be achieved transparently in C++
with operator overloading, template metaprogramming, and
preprocessor macros. Preliminary benchmarks show that
simple examples written with Ikra-Cpp and compiled with
gcc are on par with hand-written SOA code.

References
[1] Gilbert Louis Bernstein, Chinmayee Shah, Crystal Lemire, Zachary

Devito, Matthew Fisher, Philip Levis, and Pat Hanrahan. 2016. Ebb: A
DSL for Physical Simulation on CPUs and GPUs. ACM Trans. Graph.
35, 2, Article 21 (May 2016), 12 pages.

[2] Paul Besl. 2015. A case study comparing AoS (Arrays of Structures) and
SoA (Structures of Arrays) data layouts for a compute-intensive loop run
on Intel Xeon processors and Intel Xeon Phi product family coprocessors.
Technical Report. Intel Corporation.

[3] James Brodman, Dmitry Babokin, Ilia Filippov, and Peng Tu. 2014.
Writing Scalable SIMD Programs with ISPC (WPMVP ’14). ACM, 25–
32.

[4] E. Calore, A. Gabbana, J. Kraus, E. Pellegrini, S.F. Schifano, and R.
Tripiccione. 2016. Massively Parallel Lattice-Boltzmann Codes on
Large GPU Clusters. Parallel Comput. 58, C (Oct. 2016), 1–24.

[5] Hassan Chafi, Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee,
Anand R. Atreya, and Kunle Olukotun. 2011. A Domain-specific Ap-
proach to Heterogeneous Parallelism (PPoPP ’11). ACM, 35–46.

[6] James O. Coplien. 1995. Curiously Recurring Template Patterns. C++
Rep. 7, 2 (Feb. 1995), 24–27.

[7] Pawan Harish and P. J. Narayanan. 2007. Accelerating Large Graph
Algorithms on the GPU Using CUDA (HiPC’07). Springer-Verlag, 197–
208.

[8] Dirk Helbing. 2012. Agent-BasedModeling. In Social Self-Organization:
Agent-Based Simulations and Experiments to Study Emergent Social
Behavior. Springer-Verlag, 25–70.

[9] Bruce Hendrickson and Jonathan W. Berry. 2008. Graph Analysis with
High-Performance Computing. Computing in Science and Engg. 10, 2
(March 2008), 14–19.

[10] Holger Homann and Francois Laenen. 2017. SoAx: A generic C++
Structure of Arrays for handling Particles in HPC Codes. ArXiv e-
prints, to appear in Comm. Phys. Comm. (Oct. 2017).

[11] Paul Hudak. 1998. Modular Domain Specific Languages and Tools
(ICSR ’98). IEEE Computer Society, 134–142.

[12] ISO. 2012. ISO/IEC 14882:2011 Information technology — Programming
languages — C++. International Organization for Standardization. 1338
(est.) pages.

[13] Klaus Kofler, Biagio Cosenza, and Thomas Fahringer. 2015. Automatic
Data Layout Optimizations for GPUs (Euro-Par 2015). Springer-Verlag,
263–274.

[14] Roland Leißa, Sebastian Hack, and IngoWald. 2012. Extending a C-like
Language for Portable SIMD Programming (PPoPP ’12). ACM, 65–74.

[15] Roland Leißa, Immanuel Haffner, and Sebastian Hack. 2014. Sierra: A
SIMD Extension for C++ (WPMVP ’14). ACM, 17–24.

[16] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym.
2008. NVIDIA Tesla: A Unified Graphics and Computing Architecture.
IEEE Micro 28, 2 (March 2008), 39–55.

[17] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehn-
ert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A
System for Large-scale Graph Processing (SIGMOD ’10). ACM, 135–
146.

[18] Harris Mark. 2008. Optimizing parallel reduction in CUDA. Nvidia
CUDA SDK 2 (2008).

[19] Toni Mattis, Johannes Henning, Patrick Rein, Robert Hirschfeld, and
Malte Appeltauer. 2015. Columnar Objects: Improving the Perfor-
mance of Analytical Applications (Onward! 2015). ACM, 197–210.

[20] GangMei and Hong Tian. 2016. Impact of data layouts on the efficiency
of GPU-accelerated IDW interpolation. SpringerPlus 5, 1 (Feb. 2016).

[21] Marjan Mernik, Jan Heering, and Anthony M. Sloane. 2005. When and
How to Develop Domain-specific Languages. ACM Comput. Surv. 37,
4 (Dec. 2005), 316–344.

[22] DuaneMerrill, Michael Garland, and AndrewGrimshaw. 2012. Scalable
GPU Graph Traversal. SIGPLAN Not. 47, 8 (Feb. 2012), 117–128.

[23] Bertrand Meyer. 1997. Object-oriented Software Construction (2nd Ed.).
Prentice-Hall, Inc.

[24] Perhaad Mistry, Dana Schaa, Byunghyun Jang, David Kaeli, Albert
Dvornik, and Dwight Meglan. 2011. Data Structures and Transforma-
tions for Physically Based Simulation on a GPU. In High Performance
Computing for Computational Science – VECPAR 2010: 9th Int. Confer-
ence, Revised Selected Papers. Springer-Verlag, 162–171.

[25] Matt Pharr andWilliam R. Mark. 2012. ispc: A SPMD compiler for high-
performance CPU programming. In Innovative Parallel Computing
(InPar). IEEE, 1–13.

[26] Viera K. Proulx. 1998. Traffic Simulation: A Case Study for Teaching
Object Oriented Design (SIGCSE ’98). ACM, 48–52.

[27] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman Amarasinghe. 2013. Halide: A Lan-
guage and Compiler for Optimizing Parallelism, Locality, and Recom-
putation in Image Processing Pipelines. SIGPLAN Not. 48, 6 (June
2013), 519–530.

[28] P. Richmond, S. Coakley, and D. M. Romano. 2009. A High Performance
Agent Based Modelling Framework on Graphics Card Hardware with
CUDA (AAMAS ’09). International Foundation for Autonomous Agents
and Multiagent Systems, 1125–1126.

[29] Tiark Rompf, Arvind K. Sujeeth, HyoukJoong Lee, Kevin J. Brown,
Hassan Chafi, Martin Odersky, and Kunle Olukotun. 2011. Building-
Blocks for Performance Oriented DSLs (DSL ’11). 93–117.

[30] Alban Rousset, Bénédicte Herrmann, Christophe Lang, and Laurent
Philippe. 2016. A survey on parallel and distributed multi-agent sys-
tems for high performance computing simulations. Computer Science
Review 22, Supplement C (2016), 27–46.

[31] Jakob Siegel, Juergen Ributzka, and Xiaoming Li. 2009. CUDA Mem-
ory Optimizations for Large Data-Structures in the Gravit Simulator
(ICPPW ’09). IEEE Computer Society, 174–181.

[32] Matthias Springer and Hidehiko Masuhara. 2016. Object Support in an
Array-based GPGPU Extension for Ruby (ARRAY 2016). ACM, 25–31.

[33] Benedikt Stefansson. 2000. Simulating Economic Agents in Swarm.
In Economic Simulations in Swarm: Agent-Based Modelling and Object
Oriented Programming. Springer US, 3–61.

[34] Bjarne Stroustrup. 2012. Foundations of C++ (ESOP 2012). Springer-
Verlag, 1–25.

[35] Robert Strzodka. 2012. Chapter 31 - Abstraction for AoS and SoA
Layout in C++. In GPU Computing Gems Jade Edition, Wen-mei W.
Hwu (Ed.). Morgan Kaufmann, 429 – 441.

[36] Robert Strzodka. 2012. Data Layout Optimization for Multi-valued
Containers in OpenCL. J. Parallel Distrib. Comput. 72, 9 (Sept. 2012).

[37] Arvind K. Sujeeth, Kevin J. Brown, Hyoukjoong Lee, Tiark Rompf,
Hassan Chafi, Martin Odersky, and Kunle Olukotun. 2014. Delite: A

Ikra-Cpp: A C++/CUDA DSL for OOP with SOA WPMVP’18 , February 24–28, 2018, Vienna, Austria

Compiler Architecture for Performance-Oriented Embedded Domain-
Specific Languages. ACM Trans. Embed. Comput. Syst. 13, 4s, Article
134 (April 2014), 25 pages.

[38] NicolasWeber andMichael Goesele. 2014. Auto-tuning Complex Array
Layouts for GPUs (PGV ’14). Eurographics Association, 57–64.

[39] Jianlong Zhong and Bingsheng He. 2013. Parallel Graph Processing on
Graphics Processors Made Easy. Proc. VLDB Endow. 6, 12 (Aug. 2013),
1270–1273.

A First Field Addressing
This addressing mode is a variant of valid addressing. Its
purpose is to reduce the amount of waste due to the padding
area. It is also required for virtual function support in the
future. An object of class C with ID i is referenced with a C*
pointer pointing to the memory location of the value of the
first field of object i (Figure 11). If the SOA class has at least
one virtual function, the first field is the vtable pointer. If
the number of fields of the SOA class is larger than the size
of the first field, then the memory of the first field must be
padded with sizeof (C::first) − numFields(C) bytes to avoid
overwriting first field values of following objects due to zero
initialization12. Given a C* pointer obj, the memory location
of a field C::f is calculated as follows.

addrfirst (obj, C::f) = storage

+ maxInst (C) · offset∗ (C::f)

+

(
obj − storage

sizeof ∗ (C::first)
− 1

)
· sizeof ∗ (C::f)

sizeof ∗ and offset∗ take into account padding that might
be added to the first field. The memory location of a field
C::f with respect to its this pointer is calculated as follows.

addrfirst (this, C::f) = storage − sizeof (C::f)

+ maxInst (C) · offset∗ (C::f)

− (index (C::f) + storage) · R

+ this · R

where R =
sizeof ∗ (C::f)

sizeof ∗ (C::first)

12Future versions of Ikra-Cpp will allow object deallocation, in which case
a newly allocated object might reuse old data.

&obj1
storage

obj1.field1 obj2.field1

...

objmaxInst.field1 obj2.field2

...

objmaxInst.fieldnumFields

&obj2 &obj3

padding padding padding

Figure 11. Storage Buffer Layout in First Field Addressing. The
address of a SOA object is the location of its first field value, which
may be padded.

Even though the definition of addrfirst contains a fraction,
its value is always an integer. However, its calculation is
not straightforward. On the one hand, address calculation
can be optimized by isolating the variable parts. In the for-
mula above, the only variable part this is multiplied by a
compile-time constant and added to a compile-time constant
(strided memory access). On the other hand, R might not be
an integer and neither might be the constant-folded parts of
the strided memory access. Floating point operations as part
of the address computation should be avoided by all means.
Ikra-Cpp supports first field addressing only for SOA classes
where R is an integer, i.e., the size of every field is a multiple
of the size of the first field. Furthermore, this addressing
mode is superior to storage-relative zero addressing only
if the field padding size is zero or one byte. Note that field
padding is incurred for every instance, i.e., maxInst many
times. First field addressing is optimal for the minimal N-
Body example, where all fields have the same size and the
number of fields equals the size of the first field.

B Additional Evaluation
We repeated the experiments from Section 4 on another
machine with an Intel Core i7-6820HQ CPU (4x 2.70 GHz),
32 GB RAM and a GeForce 940MX GPU.

102 103 104 105 106
0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 R
un

ni
ng

 T
im

e
/ B

od
y

(s
ec

on
ds

)

1e 8

Intel Core i7-6820HQ

Ikra-Cpp
Hand-written SOA
AOS

105 106

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
g.

 R
un

ni
ng

 T
im

e
/ B

od
y

(s
ec

on
ds

)

1e 9

Nvidia GeForce 940MX (2GB)

Ikra-Cpp
Hand-written SOA
AOS

	Abstract
	1 Introduction
	2 Language Overview
	2.1 Notation
	2.2 Executor

	3 Implementation
	3.1 Overview
	3.2 Addressing Modes

	4 Preliminary Performance Evaluation
	5 Related Work
	6 Future Work
	7 Summary
	References
	A First Field Addressing
	B Additional Evaluation

