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ABSTRACT
We study a class of graph analytics SQL queries, which we call
relationship queries. These queries involving aggregation, join,
semijoin, intersection and selection are a wide superset of fixed-
length graph reachability queries and of tree pattern queries. We
present real-world OLAP scenarios, where efficient relationship
queries are needed. However, row stores, column stores and graph
databases are unacceptably slow in such OLAP scenarios.

We propose a GQ-Fast database, which is an indexed database
that roughly corresponds to efficient encoding of annotated adja-
cency lists that combines salient features of column-based orga-
nization, indexing and compression. GQ-Fast uses a bottom-up
fully pipelined query execution model, which enables (a) aggres-
sive compression (e.g., compressed bitmaps and Huffman) and (b)
avoids intermediate results that consist of row IDs (which are typ-
ical in column databases). GQ-Fast compiles query plans into ex-
ecutable C++ source code. Besides achieving runtime efficiency,
GQ-Fast also reduces main memory requirements because, unlike
column databases, GQ-Fast selectively allows dense forms of com-
pression including heavy-weight compressions, which do not sup-
port random access.

We used GQ-Fast to accelerate queries for two OLAP dashboards
in the biomedical field. GQ-Fast outperforms PostgreSQL by 2–4
orders of magnitude and MonetDB, Vertica and Neo4j by 1–3 or-
ders of magnitude when all of them are running on RAM. Our ex-
periments dissect GQ-Fast’s advantage between (i) the use of com-
piled code, (ii) the bottom-up pipelining execution strategy, and
(iii) the use of dense structures. Other analysis and experiments
show the space savings of GQ-Fast due to the appropriate use of
compression methods. We also show that the runtime penalty in-
curred by the dense compression methods decreases as the number
of CPU cores increases.
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The focus of past OLAP systems was on SQL queries on data
cubes, whose data is modeled as star/snowflake SQL schemas [9,
36, 14]. However, in recent years, an avalanche of graph data
emerged, such as disease-drug networks (chem/bio-informatics) [20,
21] and social networks (Web) [38, 39]. A new generation of
benchmarks, such as the Microsoft Academic Graph (MAG) Bench-
mark [34] and the Berkeley Big Data Benchmark [33] make clear
the distinction of these data from data cubes (such as the old TPC-
H benchmark). The particular data sets and benchmarks, as well as
many others, are essentially typed graphs, i.e., graphs where ver-
tices and edges are associated with types known in advance. There
is an increasing demand to perform analytic SQL queries over such
graphs; e.g., discovering related diseases in a disease-drug network
graph. Traditional, SQL OLAP technologies do not handle such de-
mands well because they are not sufficiently optimized for finding
paths among entities [11, 10].
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Figure 1: PubMed Schema and Corresponding Graph. Each entity
table corresponds to a type of vertices, while each relationship table
corresponds to edges linking corresponding types of vertices.

Schema. Towards SQL-based OLAP on graphs, we first define the
representation of typed graphs (also known as graphs with schema,
e.g., [18]) in an SQL database. The nodes and edges of a typed
graph are represented as tuples of relational tables. We classify the
tables into two categories: Entity tables and Relationship tables,
following the database E/R model [15]. We focus on binary rela-
tionships. Each entity table has a primary key column, called the ID
column, while each relationship table has two foreign key columns
pointing to ID columns of entity tables1. Hence, the tuples com-
prise a typed graph [37, 41]: Each entity table corresponds to a type
of vertices, while each relationship table corresponds to a type of
edges. Columns in entity tables and relationship tables correspond
to attributes of vertices and edges, respectively. For example, con-
sider the premier public biomedical database PubMed2. Figure 1(a)

1In order to capture many-to-one relationships efficiently, we also allow
entity tables to have foreign keys [15]. We neglect this possibility, as it does
not essentially change any consideration.
2http://www.ncbi.nlm.nih.gov/pubmed



shows its schema, and Figure 1(b) presents a corresponding typed
graph. The tuples of the relationship table DT stand for edges from
a document tuple/entity/node to a term tuple/entity/node.
Relationship Queries. We identify a class of queries, called re-
lationship queries, which cover many analytics needs on graph
data and, in addition, they are amenable to orders-of-magnitude
speed optimization. Informally, a relationship query contains three
steps: (i) Context Computation: The context is a collection of en-
tities whose properties satisfy the user given conditions; (ii) Path
Navigation: Navigation from source entities to target entities is via
joins over relationship tables; and (iii) Path Aggregation: The im-
portance of the target entities is computed by applying aggrega-
tion functions over attributes collected along the navigation paths,
which are accessed in the first step. The first and third steps are
optional. Relationship queries are common in graph analytics. For
example, all the queries evaluated in [26] are relationship queries.
We illustrate a relationship query on the PubMed schema, which
will serve as one of the running examples.
Query SD (Similar Documents). Assume a user wants to find
documents dj that are similar to a given document d0 with ID dID0
in the PubMed graph. Similarity between documents d0 and dj is
measured by the number of terms associated to both of them, i.e.,
the number of paths with type Doc −→ Term −→ Doc that start at
d0 and end at dj .
SELECT dt2.Doc, COUNT(*) AS similarity
FROM DT dt1 JOIN DT dt2 ON dt1.Term = dt2.Term

WHERE dt1.Doc = dID
0

GROUP BY dt2.Doc

The Query SD is a simple relationship query: It navigates via
typed paths Doc−→ Term −→ Doc and then aggregates the number
of paths reaching each target. More complex (and performance-
challenging) relationship queries are presented in Section 2.

It is challenging to answer even this simple query efficiently, due
to the large size of the graph: thirty million vertices and one billion
edges with several attributes. Given the analytical nature of rela-
tionship queries, column-oriented database systems are much more
efficient than row-stores and graph database systems, as our exper-
iments verified (see Section 6) [35, 3, 2, 19]. Nevertheless, the
obtained performance is often insufficient for online queries and
interactive applications. Query SD takes 61.6 and 19.17 seconds
on the column databases MonetDB [19] and Vertica [23], 741.2
seconds on the row database PostgreSQL, and 49.3 seconds on the
graph database Neo4j, even though we fully cached the data in main
memory in all the cases. Performance gets far worse when the join
paths are longer, the aggregations involve many attributes of the
paths or the source entities themselves are specified by their prop-
erties and connections, rather than their IDs.

To improve the performance, we propose an index-only fully
pipelined database called GQ-Fast. GQ-Fast answers Query SD
in 1.068 seconds. As the queries become more complex, its per-
formance ratio to the other systems widens. Moreover, GQ-Fast
generally requires less memory.

GQ-Fast achieves such superior performance by employing a
code generator to produce efficient fully pipelined source code run-
ning upon a new compressed fragment-based index, as outlined in
the following paragraphs.
Database Structure. A GQ-Fast database physically stores only
indices – it does not store the logical tables. Generally, the ad-
ministrator may load a relation R(C1, C2, ..., Cn) and specify that
for each ID or foreign key attribute C a respective index should
be built, using C as the indexed column. In response, GQ-Fast
will make an index IR.C for each such attribute. Figure 2 shows
the two indices IDT.Doc and IDT.Term that correspond to the two
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Figure 2: Example of Fragments and Query Processing for Query
SD. Fragments πTermσDoc=116DT and πFreσDoc=116DT are en-
coded with bit-aligned compressed array and Huffman encoding.

foreign keys of the table DT. During runtime, the GQ-Fast query
processor will use the index to find (projections of) tuples of R
that have a given C = c value. For example, the index IDT.Doc

can be used to find the terms associated to document 116 (i.e.,
πTermσDoc=116DT) or to find the term/frequency pairs associated
to document 116 (i.e., πTerm, FreσDoc=116DT).

Internally, a GQ-Fast index has two components: a lookup ta-
ble and a set of fragments. Let us say, w.l.o.g., that C1 is the in-
dexed column. Then for each column Cj ∈ {C2, . . . , Cn} and
for each value t ∈ C1 there is a fragment πCjσC1=t(R), which
retains the original order of the values. In Figure 2, the fragment
πTermσDoc=116DT (with contents 28, 66, etc.) and the fragment
πFreσDoc=116DT (with contents 6, 3, etc.) provide the terms and
frequencies associated to document 116, respectively.

To reduce space costs, GQ-Fast compresses individual fragments.
The key observation behind compressing fragments is that when a
relationship query accesses a fragment, all of its data will be used.
There is no need for random access within the fragment. Based on
this, GQ-Fast allows very compressed encodings of each individ-
ual fragment, such as Huffman encoding. Note that the typical frag-
ment is relatively small (compared to the column) and can typically
fit in the L1 cache or, at least, in the L2 cache. Hence, its decoding
is not penalized with multiple random access to the RAM.

Given a value for the indexed column, the lookup table must be
able to provide a pointer to the respective fragment, along with the
size of each fragment. A lookup table can be built in many known
ways; e.g., as a hash table. GQ-Fast saves space and response time
by building lookup tables as offset arrays that utilize the dense ID
assumption, according to which the IDs of an entity table are con-
secutive integers, starting from 0. Under this assumption, all frag-
ments of the same type are listed consecutively in an array: A GQ-
Fast lookup table for an index on R.C1 is a two-dimensional array
IR.C1 of size v×(n−1), where v is the number of unique values in
R.C1 and n is the number of columns inR. The starting address of
the fragment πCjσC1=t(R) is stored in IR.C1 [t][j− 1] and its size
can be calculated using the starting address of the next fragment.

Query Processing. GQ-Fast query plans run exclusively on in-
dices. They employ a bottom-up pipelined execution model, illus-
trated next, to avoid large intermediate results. In addition, GQ-Fast
employs a C++ code generator for query plans.

As an example, consider the generated code for Query SD, which
uses table DT with columns Document (0th column) and Term
(1st column). In Lines 2–4, GQ-Fast uses index IDT.Doc to find
the Terms’ fragment πTermσDoc=116 (DT 7→ dt1) starting at po-
sition IDT.Doc [116][1] with size ldt1.Term. GQ-Fast decodes the
fragment into the (preallocated) array Adt1.Term and returns the
number of elements ndt1.Term. Afterwards (Lines 5–9), for each



Generated Code: Generated code for Query SD

1 R← ∅
2 Fdt1.Term ← IDT.Doc[116][1]
3 ldt1.Term ← IDT.Doc[116 + 1][1]−Fdt1.Term

4 Adt1.Term, ndt1.Term ← decodeBB(Fdt1.Term, ldt1.Term)
5 for i← 0 to ndt1.Term − 1 do
6 vdt1.Term ← Adt1.Term[i]
7 Fdt2.Doc ← IDT.Term[vdt1.Term][0]
8 ldt2.Doc← IDT.Term[vdt1.Term + 1][0]−Fdt2.Doc

9 Adt2.Doc, ndt2.Doc ← decodeBB(Fdt2.Doc, ldt2.Doc)
10 for j ← 0 to ndt2.Doc − 1 do
11 vdt2.Doc ← Adt2.Doc[j]
12 R[vdt2.Doc]←R[vdt2.Doc] + 1

13 returnR

term ID vdt1.Term ∈ Adt1.Term, GQ-Fast uses index IDT.Term to
find the Documents fragment πdt2.Docσdt2.Term=vdt1.Term (DT 7→
dt2) starting at position offset IDT.Term[vdt1.Term][0] (see Fig-
ure 2). GQ-Fast decodes the identified fragments into Adt2.Doc.
Finally, GQ-Fast scans all Documents fragments to update the ar-
rayR (Lines 11–12), which holds the counts per document.

Notice that (1) GQ-Fast can afford to haveR be an array (as op-
posed to a hash table) because of the dense ID assumption; (2) The
execution is pipelined in a sense that it iterates over the fragments
and their elements. The memory footprint is small as it is dictated
by the max. size of fragments and not of the overall column size.

Contributions. This paper makes the following contributions.

• Formally identifies relationship queries, a subset of SQL that is
both important and amenable to orders-of-magnitude optimiza-
tion. We illustrate the subset’s importance with (a) examples
from two real-world use cases (Section 2) and (b) by providing
their syntax, showing that it captures a very large part of SQL.

• Describes a new index-only and fragment-based data organiza-
tion (Section 4) and coordinated query plans (Section 5). The
bottom-up query plan enables (a) aggressive compression (e.g.,
compressed bitmaps and Huffman) and (b) avoids intermedi-
ate results that consist of row IDs (which are typical in column
databases). Further space savings and speed improvements stem
from using a dense (consecutive) entity IDs assumption.

• Describes a code generator that produces C++ code for each
query plan. The produced code benefits from CPU-level opti-
mizations (Section 5).

• Performs experiments on three real-life datasets (PubMed-M,
PubMed-MS [20] and SemMedDB [21]), showing GQ-Fast is
10 – 104 times more efficient than MonetDB, Neo4j, Vertica and
PostgreSQL when all are running on main memory (Section 6).
Since the performance advantage is due to many factors, a com-
prehensive series of experiments isolates the marginal effect of
each individual factor/optimization.

GQ-Fast has been deployed in two real world use cases around
PubMed and SemMedDB data, has been released online, and is
behind a publicly accessible interactive demo system3.

2. DATA SCHEMA AND QUERIES
2.1 Data Schema
3http://137.110.160.52:8080/GQFast-System

We classify relational tables in GQ-Fast in two categories ac-
cording to the entities and the relationships of the E/R model [15]:
entity tables (e.g., Author in Figure 1(a)) and relationship tables
(e.g., DT, DA). Each entity table E has an ID (primary key) at-
tribute and several attributes M1, ...,Mn. Each tuple t ∈ E corre-
sponds to a real-life entity. A relationship table R has two foreign
key attributes F1 and F2 referencing the IDs of respective entity ta-
bles4, i.e., F1  E1.ID and F2  E2.ID, where is reference.
The combination (f1, f2) ∈ F1×F2 is unique. A relationship table
may also have measure attributes M1, ...,Mm (e.g., DT.Fre).

E/R→ Graph. Mapping E/R schemas to graph models is a well-
studied topic [37, 7]. We use the following two steps to map our
schema to a typed graph [18]: (i) Each entity table E(M1, ...,Mn)
refers to a type of vertices V, and each entity t ∈ E refers to one
vertex v ∈ V. The attributes M1, ...,Mn in the entity table are
mapped to properties of vertices; and (ii) each relationship table
R(F1, F2,M1, ...,Mm) refers to edges E crossing two types of
vertices V1 × V2, where V1 and V2 are translated from entities
E1 and E2 and F1  E1.ID and F2  E2.ID.

Graph → Relational Schema with Entities and Relationships.
Mapping a graph to a relational schema has been studied for several
years [12, 40]. We first show how to convert a typed graph to our
E/R schema, then describe general graphs. Mapping a typed graph
to our schema has the following two steps: First, store vertices of
the same type into one entity table. Each attribute of the vertices
becomes one column in the table. Second, store edges that have the
same type into the same relationship table. Edges of the same type
have source (resp. target) nodes that have the same type.

For general graphs, the basic way is to store all the vertices
in one big Node(ID, Type) table, while all the edges are in one
Edge(Source, Destination, Type) table. If more detailed knowledge
about the types of vertices can be inferred from the graph, then the
mapping approach of typed graphs can be more fine-grained.

2.2 Relationship Query
Informally, a relationship query proceeds in three steps: (i) Con-

text Selection: Entities satisfying query conditions (i.e., certain
user-provided properties) are marked as a context; (ii) Path Naviga-
tion: To reach target entities from the context, queries “navigate”
between entities via join operations; and (iii) Relevance Compu-
tation: The relevance between each target entity and the context
is computed by applying aggregation functions over measure at-
tributes collected in the second step.

In its algebraic form, a relationship query involves σ (selection),
π (projection), 1 (join), n (semi-join) operators and an optional γ
(aggregation) at the end, and must satisfy the follow restrictions:
(i) join and semijoin conditions are equalities between (primary or
foreign) key attributes and (ii) aggregations group-by on a primary
key or foreign key. The set of relationship queries includes graph
reachability (path finding) queries, where the edges are defined by
foreign keys. More generally, it includes tree pattern queries, fol-
lowed by aggregation. The first restriction does not narrow down
the scope of relationship query applications as it only requires that
navigation on a graph should be performed via connected edges,
which is a natural requirement for graph navigation. The second
restriction allows GQ-Fast to use an array to maintain the aggre-
gation results instead of using a map, which contributes to 30%
performance improvement (see Table 9 in Section 6.2.3).

Example Queries. We now illustrate a number of relationship
queries using the datasets of some GQ-Fast applications: PubMed

4In this paper, we focus on relationship tables with two foreign keys.

http://137.110.160.52:8080/GQFast-System


and SemMedDB. These queries were used in our experiments and
are implemented in our interactive demo system.

Even though the definition of relationship queries includes a larger
set of queries, we focus on these queries, because they illustrate ac-
curately the use cases for which GQ-Fast was designed and achieves
the best speedup compared to other database systems: queries with
long join paths involving many-to-many relationships. In the fol-
lowing examples, we use E1 → E2 to visualize a join from table
E1 to table E2 and �E to visualize an intersection on table E.

2.2.1 Example Queries in PubMed
FSD (Frequency-Time-aware Document Similarity). Query FSD
computes time-aware and frequency-aware cosine similarity. The
cosine similarity is computed as follows: Each document d is as-
sociated with a vector td = [td1, . . . , t

d
n], where n is the number

of terms across all documents. The cosine similarity between two
documents x and y is defined as

∑
i=1,...,n t

x
i t
y
i

5 In contrast to
Query SD in the Introduction, Query FSD raises the similarity de-
gree of documents that are chronologically close. The navigation
path of Query FSD can be visualized as d1→ dt1→ dt2→ d2.

SELECT dt2.Doc,
SUM(dt1.Fre * dt2.Fre)
abs(d1.Year-d2.Year)+1

FROM (((Doc d1 JOIN DT dt1 ON d1.ID = dt1.Doc)
JOIN DT dt2 ON dt1.Term = dt2.Term)

JOIN Doc d2 ON d2.ID = dt2.Doc)

WHERE d1.ID = dID
0

GROUP BY dt2.Doc

AD (Authors’ Discovery). Query AD finds the authors who pub-
lished papers that pertain to the terms identified by tID1 , . . . , tIDn
(e.g., authors that published papers related to the terms “neoplasms”
and “statins”) and counts the number of papers per author. The nav-
igation path of Query AD can be visualized as �dt→da.

SELECT da.Author, COUNT(*)
FROM DA da
WHERE da.Doc IN

(SELECT dt.Doc FROM DT dt WHERE dt.Term = tID1 )
INTERSECT
...
INTERSECT

(SELECT dt.Doc FROM DT dt WHERE dt.Term = tIDn )
GROUP BY da.Author

FAD (Co-Occurring Terms Discovery). Query FAD is similar to
Query AD. It finds other terms that co-occur in documents about
terms identified by tID1 , . . . , tIDn along with the number of occur-
rences (e.g., terms that co-occur in documents about “neoplasms”
and “statins” and how often). The navigation path of Query FAD
can be visualized as �dt→dt1.

SELECT dt1.Term, Sum(dt0.Fre)
FROM DT dt1
WHERE dt.Doc IN

(SELECT dt.Doc FROM DT dt1 WHERE dt1.Term = tID1 )
INTERSECT
...
INTERSECT

(SELECT dt.Doc FROM DT dtn WHERE dtn.Term = tIDn )
GROUP BY dt1.Term

AS (Author Similarity). Query AS finds the authors whose publi-
cations relate to the Mesh terms in the publications of a given au-
thor, identified by the id aID . Furthermore, each discovered author
is given a weight/similarity score by first computing the similar-
ity of the publications using the cosine of the term frequencies and
5In practice, the queries also normalize for the sizes of tx and ty and, in
later examples, the sizes of measures. The examples exclude the normal-
ization since they do not present any important additional aspect to the ex-
hibited query pattern.
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then weighing recent publications heavier. The navigation path of
Query AS can be visualized as da1→dt1→dt2→d→da2.

SELECT da2.Author,SUM(dt1.Fre × dt2.Fre)/(2017-d.Year)
FROM (((DA da1 JOIN DT dt1 ON da1.Doc=dt1.Doc)

JOIN DT dt2 ON dt1.Term = dt2.Term)
JOIN Doc d ON dt2.Doc=d.ID)

JOIN DA da2 ON dt2.Doc=da2.Doc

WHERE da1.Author = aID

2.2.2 Example Queries in SemMedDB
The Scripps Research Institute implemented Knowledge.Bio6,

a system for exploring, learning, and hypothesizing relationships
among concepts of the SemMedDB database7, which is a reposi-
tory of semantic predications (subject-predicate-object triples). Fig-
ure 3 shows the schema of SemMedDB.

CS (Concept Similarity). As a use case of Knowledge.Bio, Query
CS finds the concepts that are most relevant to a given concept,
e.g., “Atropine”, where cID is the concept ID of “Atropine”. The
navigation path of Query CS can be visualized as c1→ p1→ s1
→ s2→ p2→ c2.

SELECT c2.CID, COUNT(*)
FROM CS c2, PA p2, SP s2
WHERE s2.PID = p2.PID

AND p2.CSID = c2.CSID AND s2.SID IN
(SELECT s1.SID
FROM CS c1, PA p1, Sp s1
WHERE s1.PID = p1.PID AND p1.CSID = c1.CSID

AND c1.CID = cID )
GROUP BY CID

The running time of this query on an Amazon Relational Database
Service (Amazon RDS) with MySQL was 25 minutes. GQ-Fast re-
duced the running time for that query to less than 1 second.

3. ARCHITECTURE
Applications use GQ-Fast as an OLAP-oriented database that ac-

companies their original transaction-oriented databases. Figure 4
gives an overview of GQ-Fast’s architecture. It has two parts: GQ-
Fast Database Generation and GQ-Fast Query Processing.

GQ-Fast Database Generation. The GQ-Fast Loader receives
loading commands, retrieves data from one or multiple relational
databases, and creates GQ-Fast indices along with relevant meta-
data, containing information about fragments and their encodings.
This phase is done offline. The schema of the GQ-Fast database
has to follow certain conventions (see Section 2). GQ-Fast data is
stored in main memory data structures (see Section 4).
6http://knowledge.bio/
7http://skr3.nlm.nih.gov/SemMedDB/dbinfo.html
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When loading data into GQ-Fast, users should specify (i) the
columns to be indexed, upon which GQ-Fast builds lookup tables.
Then, GQ-Fast organizes the values in other columns as fragments;
and (ii) an encoding method for each column excluding indexed
columns. Section 4 provides detailed guidelines for choosing proper
encoding methods for different columns.

GQ-Fast Query Processing. The GQ-Fast Query Processor re-
ceives an SQL query and outputs its result. It consists of several
subcomponents. The Algebra Translator translates an SQL query
into a relational algebra expression, which is then transformed into
a Relationship Query Normalized Algebra (RQNA) expression (see
Section 5.1) by the RQNA Normalizer using rewriting rules. The
RQNA Normalizer also verifies whether an SQL query is a rela-
tionship query by checking the restrictions according to metadata.
Afterwards, the Physical-plan Producer transforms the RQNA ex-
pression into a physical-level plan. The Code Generator consumes
the physical plan and metadata and produces C++ code, which is
then compiled and ran on the GQ-Fast index to get final results.
GQ-Fast can also prepare a query statement, and then execute it
multiple times (as JDBC does), changing the parameters each time.

4. GQ-FAST INDEX STRUCTURE
This section first presents the GQ-Fast index structure and ana-

lyzes different encoding methods, then describes how to build in-
dices for both entity and relationship tables. Finally, a discussion
of how to support incremental updates is provided.

Index Structure. Given a relation R(C,C1, C2, ..., Cn), assum-
ing the indexed column isC, GQ-Fast builds one index IR.C (shown
in Figure 5) for R. A GQ-Fast index has one lookup table for the
indexed column C, and organizes values in columns C1, ..., Cn in
fragments. We assume that |R| = h, consequently the column C
contains IDs in the interval [0, h−1]. The lookup table PC is a 2D

array of size (h+1)×n and stores offsets into the respective frag-
ments array designating the beginning of a fragment. All fragments
are stored consecutively and byte-aligned in one fragment byte ar-
ray per column. Specifically, P[t][m] stores the offset where frag-
ment πCmσC=t(R) starts in Cm’s fragment byte array, where Cm
is the (m+ 1)-th column of R. If a value t ∈ C has no associated
values in columns C1, ..., Cn, then all fragments π∗σC=t(R) are
empty. The size of a fragment is defined implicitly as the differ-
ence between two consecutive offsets, which is why the size of the
first dimension of P is h+1. For further space savings, offsets are
encoded with the minimum number of bytes. In the following, we
present various encodings for fragments utilized in this paper.
Fragments Encoding Methods. In a GQ-Fast index IR.C of re-
lation R(C,C1, C2, ..., Cn), all the values associated with t ∈ C
in column Ci are organized as a fragment πCiσC=tR. GQ-Fast
compresses fragments with different compression methods. GQ-
Fast does not have any restrictions on compression methods, as
long as fragments can be decompressed without accessing other
fragments. It allows a wide range of encoding methods, including
those that do not support random access within a fragment. GQ-
Fast currently uses the following four methods for encoding single
fragments. The extended version provides more details on describ-
ing the encoding methods.

• Uncompressed Array (UA): An uncompressed array stores the
original numerical values in their declared type.

• Bit-aligned Compressed Array (BCA): Assume a foreign key at-
tribute points to the IDs of an entity, which range from 0 to h−1.
Then each foreign key value needs dlog2 he bits. Consequently,
a fragment πAσF=cR with size n requires dn·dlog2 he

8
e bytes

(including alignment-induced padding).

• Byte-aligned Compressed Bitmap (BB): Given an array of val-
ues [v1, . . . , vn], the equivalent uncompressed bit vector is a se-
quence of bits, such that the bits at the positions v1, . . . , vn are
1 and all other bits are 0. GQ-Fast uses the byte-aligned method
to compress bit vectors [6]. The first bit of a byte is a flag that
declares whether (i) the next seven bits are part of a number that
also uses consequent bytes or (ii) the remaining seven bits actu-
ally represent the length number by themselves.

• Huffman-encoded Array (Huffman): GQ-Fast employs Huffman
encoding with an array-based encoding of the Huffman tree [13,
24] to avoid tree traversals (i.e., random access on the heap).
This can speed up decoding due to CPU L1/L2 caching effects.

We compared the performance and storage tradeoff of all encod-
ing methods analytically and experimentally. Table 1 summarizes
the space needed by each fragment. Assume that each fragment
contains N elements, the domain size of the column containing
this fragment is D, ED = −∑D

i=1 pi log pi is the entropy of the



Uncompressed Array (UA) 32 ·N · dlog232 De
Bit-aligned Compressed Array (BCA) 8 ·

⌈N·dlog2De
8

⌉
Byte-aligned Compressed Bitmap (BB) N ·(8·dlog128

D−N
N
e)

Huffman 8 · dN·ED+D
8

e

Table 1: Space Analysis of Encoding Methods

column, and pi is the probability of occurrence of element i8. In
our experiments, GQ-Fast chooses an optimal encoding for each
column with minimal space cost by using the formulas in Table 1,
where N is set to be the average fragment size on each column.
Building GQ-Fast Indices. For an entity tableE(ID ,M1, . . . ,Mm),
GQ-Fast chooses the ID column as the indexed column and creates
one index IE.ID . Note that in an entity table, a fragment contains
only a single value.

For a relationship table R(F1, F2, M1, . . . ,Mm) with two for-
eign keys F1 and F2, GQ-Fast chooses both F1 and F2 as in-
dexed columns, which means GQ-Fast builds two indices IR.F1

and IR.F2 according to different indexed columns. The reason is
that a relationship table refers to a collection of (potentially undi-
rected) edges in graphs, and it is necessary to provide an efficient
way to obtain fragments for both source vertices (in column F1)
and destination vertices (in column F2). For scenarios where re-
lationship tables have more than two foreign keys, say a > 2, to
fully index all the foreign key columns (if needed) GQ-Fast builds
a indices, which may require a large amount of space.
Incremental Updates. GQ-Fast’s compact storage strategy (stor-
ing all the fragments of the same attribute in one big fragment array
and using offsets to refer to them) can significantly reduce space
costs at the expense of incremental updates. To support incremen-
tal updates, GQ-Fast could (i) store each fragment independently
and (ii) maintain explicit pointers for them. Theoretically, GQ-Fast
will then require additionalN(64−dlog2 Ne) bits, whereN is the
total number of distinct values in the indexed column.

As fragments may be encoded using Huffman encoding, it is
challenging to maintain the optimality of Huffman-encoded frag-
ments after massive updates. Dynamic Huffman encoding [22]
should be applied, which remains optimal as the weights change.

5. GQ-FAST QUERY PROCESSING
The GQ-Fast Query Processor (Figure 4) transforms a given query

into an RQNA expression, which is then transformed into a plan of
physical operators (e.g., the plan in Figure 8 corresponds to the
RQNA expression in Figure 7(e)), which is then used together with
metadata for C++ code generation. This section formally describes
RQNA expressions, presents physical operators and key intuitions
in the translation of RQNA expressions into plans, and describes
how the GQ-Fast code generator translates plans into code, essen-
tially by mapping each physical operator to an efficient code snip-
pet and stitching these snippets together.

5.1 RQNA Expression
To efficiently answer relationship queries, GQ-Fast first trans-

lates them into RQNA (Relationship Query Normalized Algebra)
expressions (Figure 6). In the simplest case, an RQNA expression
is a left-deep series of joins with a selection and aggregation: In
Line 4 the RQNA expression starts with a selection σc(T 7→ v)
of qualifying entities – we call them the context entities9. Subse-
8We report the lower bound of the space needed by Huffman. The space
needed by Huffman is bounded by [8dN·ED+D

8
e, 8dN·ED+N+D

8
e) [29].

9The condition may be set to true, setting the context to all entities.

RQNA ⇒ γk;f1(.)7→N1,...,fn(.)7→Nnγ Join (1)

attributes named k are primary or foreign keys
| Join (2)

Join ⇒ Join 1j.k1=v.k2 (πĀ(T 7→ v)) (3)
j is a variable defined by Join

| πĀ(σc(T 7→ v)) (4)
| πĀ((T 7→ v) nv.k1=x.k2 Context) (5)

x is a variable defined by Context
Context ⇒ πv.kJoin (6)

| πv.kσc1 (T1 7→ v) ∩ . . . ∩ πv.kσcn (Tn 7→ v) (7)

Figure 6: Grammar Describing RQNA Expressions

quently, the RQNA expression performs a series of left-deep joins
(Line 3) that navigate to entities related to the qualifying entities.
Optionally, an RQNA expression may group-by the key attribute k
(Line 1), followed by multiple aggregations.

In more complex cases, an SQL query (as shown in later ex-
amples) may contain nested queries using IN syntax, where IN
translates to semijoins (Line 5). Nested queries are themselves re-
lationship queries (Lines 6) without aggregation or the result of an
intersection (Lines 7). Figure 7 shows the RQNA expressions for
all the queries evaluated in this paper.

5.2 Physical Operators
This section explains the physical operators’ syntax and seman-

tics, neglecting for now the bottom-up pipelined execution aspects.

Fragment-based Join. The operator
→
1
r.A1,...,r.An
B;R 7→r IR.B′L re-

ceives as input the result of an expression L that produces a column
B, generally among others. For each value b ∈ B, the operator
uses the index IR.B′ to retrieve (and decompress) the fragments
πAiσr.B′=b (R 7→ r) for i = 1, . . . , n. Intuitively, L would be the
left operand of a conventional join and R 7→ r would be the right
side. Conceptually, one may think that the fragments are combined
into a result table whose schema has the attributesA1, . . . , An (and
also the attributes of L). However, in reality, the decompressed
fragments are not combined into rows. In adherence to the late
binding technique [1, 2] of column-oriented processing, the order-
ing of the items in the fragments dictates how they can be combined
into tuples. The

→
1 operator is useful for executing both selections

and joins of the RQNA expressions:

• A projection/join combination πattrs(L),r.A1,...,r.An(L 1B=r.B′

R 7→ r) whereB is an attribute of L andB′ is a foreign key of a
relationship tableR orB′ is the ID of an entity tableR, translates

to L
→
1
r.A1,...,r.An
B;R 7→r IR.B′ .

• A projection/selection combination πr.A1,...,r.Anσr.B′=c(R 7→
r), where c is a constant and B′ is a foreign key of a relation-
ship table R or B′ is the ID of an entity table R, translates to

{[B : c]} →1r.A1,...,r.An
B;R 7→r IR.B′ . Essentially, GQ-Fast reduces

the selection into a join, by considering the left-hand-side argu-
ment to be a table with a single tuple and a single attribute B,
whose value is c.

Fragment-based Semijoin. The operator
→
o
r.A1,...,r.An

B;R 7→r IR.B′L
operates similarly to the fragment-based join but returns only at-
tributes from (R 7→ r) if there is a matching tuple in L. It is
introduced in the plan when the RQNA expression has an expres-
sion πr.A1,...,r.An((R 7→ r)nB=r.B′L). The operator maintains a
lookup structure for values from theB column of L; for each value
b ∈ B, the operator checks the lookup structure to find out whether
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{[DA.Author : ]} →1da1.Doc

Author;DA 7→da1 I

→
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IDT.Doc
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Figure 8: Physical Algebraic Plan for Query AS

that particular value bwas already received earlier. If L is relatively
large, it is best to use a boolean array, despite the fact that the query
needs to initialize all array elements to false. Otherwise, a hash set
or a tree is preferable.

While joins and semijoins are sufficient, the extended version
also describes the occasional replacement of semijoins with a merge
intersection operator that merges sorted one-attribute relations. As
an example, Query AD uses that operator.

Aggregation. The aggregation operator γ1
r.D;α(s(A1,...,An)) groups

its input according to the single group-by attribute r.D and aggre-
gates the results of the scalar function s(A1, . . . , An) using the
associative aggregation function α (e.g., min, max, count, sum).
Recall, in relationship queries the single group-by attribute r.D is
the foreign key of a relationship table or the ID of an entity. In
either case, the range of r.D is the same as the range of the un-
derlying entity ID. Consequently, the γ1 operator’s superscript 1
signifies the assumption that the domain of G is small enough to
allow for the allocation of an array, whose size is the domain of
r.D and each entry is a number, initialized to zero. Every time
a “tuple” from r is processed, this array is updated at r.D ac-
cordingly. In addition, an array of booleans registers which val-
ues of r.D were actually found. For example, the aggregation
γ1

Author ;
SUM(DT2.Fre×DT1.Fre)

(2017−DY .Year)

of the Query AS, as shown in Fig-

ure 8, initializes an array and a boolean register array with sizes of
domain size of Author.

5.3 Code Generator

The GQ-Fast code generator (Algorithm 1) has two main compo-
nents: to-be-emitted source code boxed by dotted lines in the pseu-
docode; and control commands that determine which code pieces
should be emitted. The input of the code generator is (1) the physi-
cal plan and (2) GQ-Fast metadata, which specifies the encoding
of each fragment. The code generator has two phases: (1) ini-
tialize necessary buffers (Lines 3–5); and (2) emit code pieces for
each physical operator (Lines 6–40). More precisely, in the first
phase, the GQ-Fast code generator initializes an array R to store
final aggregation results and several boolean arrays for duplicate-
checking in semijoin operations. In the second phase, it emits

code for selection operators {[B : c]} →1r.A1,...,r.An
B;R 7→r IR.B′ (Lines

8–10). The getDecodeFragment macro emits code for (1) re-
trieving a fragment (Lines 1–3) and (2) calling the correspond-
ing decode macro (Lines 4–11); encoding information is obtained

from metadata. For each join L
→
1
r.A1,...,r.An
B;R 7→r IR.B′ and semi-

join L
→
o
r.A1,...,r.An

B;R 7→r IR.B′ operator (Lines 11–23), the genera-
tor first checks whether the previous operator operates on an entity
table and the operated columns are the same. In that case a for-
loop can be avoided (Line 14). For a semijoin operator, one more
duplicate-checking step should be added (Line 19). The remaining
steps (Lines 20-23) of join/semijoin are identical to the selection
operator. For each intersection operator

→∩
α

F1,...,Fm , the generator
first identifies whether all the fragments are encoded with the same
bitmap encoding (metadata). If so (α = 0), the generator emits
code to perform intersection directly on encoded fragments (Lines
26–30). Otherwise, it emits code to perform intersection on de-
coded fragments (Lines 32–36). Then, the code generator emits
aggregation code pieces (Lines 38–40) for an aggregation operator
γ1α
r.D;α(s(A1,...,An)).

Memory Requirements. Query execution requires 4 · |r.D| +∑k
i=1 ·|ri.B′| bytes, where |r.D| is the domain size of r.D for

an aggregation operator, k is the number of semijoin operators, and
|ri.B′| is the domain size of ri.B′ for the ith semijoin operator.

6. EXPERIMENTS
We evaluated GQ-Fast’s novelties by running relationship queries

on three real-life datasets. In all experiments, the entire data set was
located in main memory.

6.1 Environment and Setting
All experiments were done with GQ-Fast 0.1 on a computer with

a 4th generation Intel i7-4770 processor (4× 32 KB L1 data cache,
4 × 256 KB L2 cache, 8 MB shared L3 cache, 4 physical cores,



Algorithm 1: Code Generator
1 Input: a list of physical operators O and metadata M;
2 Output: executable C++ code;
// Initialize arrays in global

3 Initialize an array R (|R| = |r.D|) for γ1
r.D;α(s(A1,...,An))

;

4 for each semijoin operator L
→
o
r.A1,...,r.An

B;R 7→r IR.B′ do
5 Initialize a boolean array BA (|BA| = |R.B′|) with false values;

// Produce codes
6 for each physical operator o ∈ O do
7 if o = {[B : c]} →1r.A1,...,r.An

B;R 7→r IR.B′ then
8 offset-array Pr = IR.B′ [c];
9 for(each column r.Ai){

10 getDecodedFragment(Pr, r.Ai, c);
11 else if o=L

→
1
r.A1,...,r.An
B;R 7→r IR.B′ ||o=L

→
o
r.A1,...,r.An

B IR.B′then
12 //Let o′ be the previous operator of o
13 if o.B = o′.B AND o′.R is an entity table then
14 vB = AB [iB ];

15 else
16 for(iB = 0; iB < nB ; iB + +) {
17 vB = AB [iB ];

18 if o = L
→
o
r.A1,...,r.An

B IR.B′ then
19 if(BA[vB ] = false) {
20 offset-array Pr = IR.B′ [vB ];
21 for(each column r.Ai){
22 getDecodedFragment(Pr, r.Ai, vB);
23 }

24 else if o =
→∩
α

L1,...,Lm
then

25 if α =0 then
26 for(each Li = {[B : c]} →1AB;R 7→r IR.B′ ) {
27 offset-array Pr = IR.B′ [c];
28 fragment Fr.A= Pr[column(A)];
29 }
30 I←Bitwise(Fr1.A,...,Frm.A);

31 else
32 for(each Li = {[B : c]} →1r.AB;R 7→r IR.B′ ) {
33 offset-array Pr = IR.B′ [c];
34 getDecodedFragment(Pr, r.A, c);
35 }
36 I←Merge(Ar1.A,...,Arm.A);

37 else if o = γ1
r.D;α(s(A1,...,An))

then
38 for(ir.D = 0; ir.D < nr.D; ir.D + +){
39 R[ir.D] = α(s(A1, . . . , An));
40 }

41 Emit corresponding close braces;

Macro getDecodedFragment(Pr, r.A, c)
fragment Fr.A= Pr[column(A)];
offset-array next = IR.B′ [c+ 1];
length lr.A = next [column(A)]−Fr.A;
if FA is UA encoded then

decodeUA(Fr.A, lr.A: Ar.A, nr.A)
if FA is BCA encoded then

decodeBCA(Fr.A, lr.A: Ar.A, nr.A)
else if FA is BB encoded then

decodeBB(Fr.A, lr.A: Ar.A, nr.A)
else if FA is Huffman encoded then

decodeHuffman(Fr.A, lr.A: Ar.A, nr.A)

1
2
3
4
5

6
7
8
9

10
11

3.6 GHz), 16 GB RAM, and a Seagate ST2000DM001-1CH1 hard
drive, running Ubuntu 14.04.1. Generated C++ code was compiled
with g++ 4.8.4, using -O3 optimization.

Dataset. We evaluated all selected DB systems and design choices

Table name # rows
DT(Doc,Term,Fre) 207,092,075
DT(Doc,Term,Fre) 901,388,401
DA(Doc,Author) 61,329,130
Document(ID,Year) 23,176,635

Entity ID Domain Size
Doc(ument) 23,326,299
Term 27,883
Term 259,728
Author 6,301,521

Table Fragment Average size Maximal size Standard deviation

DT
Doc 7427.18 8192342 197.56
Term 14.48 667 17.52
Doc 3470.50 8192342 318.72

DT
Term 63.06 753 39.06

DA
Doc 5.99 5712 21.93
Author 4.35 3163 8.04

Document Year 1.00 1 0.00

Table 2: Data Characteristics of PubMed-M and PubMed-MS.
PubMed-MS has more terms than PubMed-M, which results in
larger size of DT table in PubMed-MS. Gray cells indicate the dif-
ference between them.

Table # rows Table # rows
CS 1550482 Concept 1339227
PA 37508726 Sentence 146055876
SP 81929321 Predication 17359895

Table Fragment Ave size Max size Standard deviation

CS
concept semtype id 1.16 5.00 0.39
concept id 1.00 1.00 0.00

PA
predication id 122.00 109532 845.15
concept semtype id 2.15 38 0.53

SP
sentence id 4.65 125367 112.36
predication id 1.61 140 1.07

Table 3: Data Characteristics of the SemMedDB Dataset

with three datasets: PubMed-M, PubMed-MS and SemMedDB.
Table 2 and Table 3 summarize their data characteristics (see Sec-
tions 1 and 2 schemas).

Compared Systems. To provide an end-to-end comparison, we
compared GQ-Fast with the graph database Neo4j 2.3.210, the row-
oriented database PostgreSQL 9.4.0, the cluster-based and column-
oriented Vertica Analytics Platform, and the in-memory column
database MonetDB.

To isolate the effect of compiled code from the other contri-
butions of GQ-Fast, we implemented two main-memory column
databases serving as main-memory baselines. One is a plain main-
memory column database (PMC) without optimizations. The other
one is a fully optimized main-memory column database (OMC).
They both utilize a code generator for executable C++ plans. The
logical query plans in PMC and OMC are identical to the ones
in GQ-Fast (same RQNA expressions). Both PMC and OMC use
the operator-at-a-time execution model as MonetDB [35, 3] does.
PMC maintains one copy of each unsorted table, and uses whole
column scans when executing each operator. OMC maintains two
copies of each table, such that each copy is sorted based on one for-
eign key column. OMC applies all optimizations that can improve
the performance of relationship queries: (1) Applying run-length
encoding for sorted columns, improving the lookup performance
and reducing space costs; (2) utilizing binary search for sorted
columns instead of whole column scan. Implementation details of
PMC and OMC can be found in the extended version [25].

10Since Neo4j does not support SQL syntax, we translated [25] queries into
Cypher, Neo4j’s query language.



6.2 Experimental Results
We ran the Queries SD, FSD, AD, FAD and AS on PubMed

(PubMed-M and PubMed-MS) and Query CS on SemMedDB (see
queries in Section 2). We always chose the encoding with the least
space costs, if not stated otherwise; even though a different encod-
ing might perform better in terms of running time. We measured
the warm running time for queries, i.e., each query was run twice
but only measured the second time. The extended version [25] pro-
vides more information about the selection of query constants and
additional commentary on the results.

We measured the overall runtime performance (Section 6.2.1)
and the overall space cost (Section 6.2.2) for each algorithm and
database. The results show that GQ-Fast outperforms MonetDB
and OMC by 10–103 and 7–70 times, respectively, and generally
uses less space, due to a combination of the following effects:

• Compilation: Using a code generator to generate C++ code.

• Pipelining: Adopting a bottom-up pipelined execution strategy.

• Array-l: Using dense IDs to maintain an array look-up table in-
stead of a hash table.

• Array-a: Using dense IDs to maintain an array to store aggrega-
tion results instead of hash table.

• Compression: Applying aggressive data compression schemes.

The gap between the speedup of GQ-Fast and OMC over Mon-
etDB reveals the power of compiled code. In order to isolate the
effect of the other four optimizations, we implemented variants of
GQ-Fast and OMC as summarized in Table 4.

Compile Pipeline Array-l Array-a Compress
GQ-Fast 3 3 3 3 3
GQ-Fast-UA 3 3 3 3 7
GQ-Fast-UA(Bin) 3 3 7 3 7
GQ-Fast-UA(Map) 3 3 3 7 7

OMC 3 7 7 7 311

OMC-denseID 3 7 3 3 312

Table 4: Summary of Different Variants of GQ-Fast and OMC

GQ-Fast-UA is GQ-Fast with uncompressed arrays (as encod-
ing). In addition, GQ-Fast-UA(Bin) uses binary search instead of
array lookup. Therefore, GQ-Fast-UA(Bin) does not have the dense
IDs optimization. GQ-Fast-UA(Map) is like GQ-Fast-UA but uses
a hash map instead of an array to store final aggregation results.
It does not use the dense IDs optimization. OMC-denseID is like
OMC but uses arrays instead of hash maps in both lookup and ag-
gregation, which means OMC-denseID has the same lookup and
aggregation data structures as GQ-Fast.

To isolate the effect of each single optimization, we conduced
further experiments as described in Section 6.2.3.

• To measure the effect of dense IDs, we compared (i) GQ-Fast-
UA with GQ-Fast-UA(Bin) (Table 8), and (ii) GQ-Fast-UA with
GQ-Fast-UA(Map) (Table 9).

• To measure the effect of using bottom-up pipelining against ma-
terializing intermediate results, we compared GQ-Fast-UA with
OMC-denseID (Table 10).

• To measure the effect of applying different compressions, we an-
alyzed the performance and space cost of different compressions
in GQ-Fast (Table 11).

11OMC uses RLE encoding and dictionary encoding.
12OMC-denseID uses RLE encoding and dictionary encoding.

SD AD AS
GQ-Fast on general-graphs 1.440 0.407 47.077

Neo4j on general-graphs 137.6 80.2 50121.9

Table 5: Running Time on General Graphs

Section 6.2.4 provides additional experiments to analyze (1) the
effect of parallel processing in GQ-Fast, (2) the time required for
building GQ-Fast indices, and (3) the time required for loading in-
dices from disk to memory if the indices are stored on disk.

6.2.1 Overall Runtime Performance
Table 6 reports the average running time of each query for each

system, using 8 threads13. Overall, GQ-Fast shows superior perfor-
mance for all queries. We further observed that:

• On average, GQ-Fast outperforms Vertica, MonetDB and OMC
by a factor of 100, 170, and 20, respectively (see ratio columns).
If GQ-Fast only applies UA compression, it will achieve better
performance (running time of Query AS on PubMed-M is 4.45s).

• MonetDB outperforms PMC: Its indexed plans perform better
than PMC’s compiled code. OMC outperforms MonetDB, since
(a) OMC uses code generation and (b) has two copies of each
relationship table. For example, OMC uses two copies of the
DT table in Query SD. Therefore, each OMC lookup is a binary
search on the sorted column (hence essentially tieing the index-
based lookups of MonetDB) and lookup results are run-length
encoded on the sorted column, hence reducing the size of inter-
mediate results.

• High fanout is favorable to GQ-Fast: The improvement over the
competing systems is usually higher in the queries SD, FSD,
FAD and AS when they use DT of PubMed-M, compared to
queries that use DT of PubMed-MS. Term has a higher fanout
in DT of PubMed-M. We conjecture that high fanouts ammor-
tize over larger fragments the fixed costs of the decompression
routines, therefore extending GQ-Fast’s advantages.

We also conducted experiments to evaluate the performance of
GQ-Fast on general graphs. As shown in Table 5, GQ-Fast is still
about 100x faster than Neo4j, even after incurring the 10x slow-
down (due to lack of knowledge on types), which speaks to the ap-
plicability of the GQ-Fast techniques in the case of general graphs.

6.2.2 Overall Space Cost
Table 7 presents the overall space costs. GQ-Fast has the lowest

space cost in PubMed-M and PubMed-MS. Interestingly, GQ-Fast
also uses much less space than PMC even though PMC stores only
one copy of each table while GQ-Fast stores two “copies” (i.e., two
indices); this indicates the importance of dense compressions. In
SemMedDB, GQ-Fast still uses less space than OMC, but more
space than PMC. The reason is the fanout of SemMedDB (averag-
ing at 1.16), which dilutes the effect of fragment compression since
fragments are very small and space is spent on padding them to full
bytes. Even though PMC uses marginally less space than GQ-Fast
in SemMedDB, GQ-Fast is still the best overall choice as it is 760
(i.e., 23.58/0.031) times faster (Table 6).

6.2.3 Effect of Each Optimization
Effect of Dense IDs. The dense IDs assumption allows GQ-Fast
to use arrays for semijoins and aggregations instead of other data
structures like hash maps.

13We applied spinlocks [8] to ensure correctness during concurrent access
to shared arrays for the semijoin and aggregate operators.



(a) (b) (c) (d) (e) (f) (g) MonetDB
GQ-Fast

OMC
GQ-FastQuery Join # tuples Result # tuples Neo4j Postgres Vertica MonetDB PMC OMC GQ-Fast

PubMed-M

SD 22,401,361 6,409,707 14.7 211.2 5.19 10.8 23.36 2.47 0.230 47.0 10.7
FSD 22,401,361 6,409,707 86.6 567.5 12.32 23.9 33.98 5.93 0.821 29.1 7.2
AD 99,734 57,584 7.4 158.1 2.17 6.2 4.82 0.73 0.037 86.5 19.7

FAD 717,487 5,643 18.2 198.6 3.85 8.5 7.16 0.88 0.064 70.3 13.8
AS 147,273,421 6,393,107 5546.5 29520.5 42.34 4474.8 5832.30 194.77 5.662 790.3 34.4

PubMed-MS

SD 136,151,592 12,466,510 61.6 741.2 37.17 49.3 400.24 10.25 1.068 46.2 9.6
FSD 136,151,592 12,466,510 146.8 2148.7 53.48 112.8 1892.30 32.80 4.376 25.8 7.5
AD 85,982 64,765 6.9 112.9 5.60 5.2 19.67 0.67 0.035 77.1 19.1

FAD 1,503,368 9,556 11.1 119.6 15.17 3.5 24.99 0.71 0.062 56.5 11.5
AS 1,391,434,113 9,803,226 9604.8 180164.1 362.35 28918.8 33321.74 3083.30 54.720 528.5 56.3

SemMedDB CS 207,191 5,057 21.0 53.1 10.94 4.7 23.58 2.12 0.031 151.6 68.4

Table 6: End-to-end Runtime Performance Tests (in seconds). Numbers in bold are the fastest ones.

(a) (b) (c) (d) (e) (f) (g) MonetDB
GQ-Fast

OMC
GQ-FastNeo4j Postgres Vertica MonetDB PMC OMC GQ-Fast

PubMed-M 34.36 20.92 3.21 3.69 3.09 3.49 1.47 2.51 2.37
PubMed-MS 112.15 78.90 11.06 13.27 11.42 11.82 3.51 3.78 3.37
SemMedDB 10.39 6.84 2.89 1.23 0.97 2.05 1.36 0.90 1.51

Table 7: Space Cost for Each System (in GB). Numbers in bold are the smallest ones.

Ave # lookups GQ-Fast-UA(Bin) GQ-Fast-UA θ
SD 22 247.94 177.08 28.58%
FSD 21748262 1129.72 435.60 61.44%
AD 23609 38.67 30.33 21.57%
FAD 23609 27.84 25.95 6.79%
AS 58589421 7364.92 4510.11 38.76%
CS 132975 16.21 8.62 46.82%

Table 8: GQ-Fast-UA vs. GQ-Fast-UA(Bin) (in ms). The last
column shows the improvement, where θ = 1− GQ−Fast−UA

GQ−Fast−UA(Bin)
.

Ave # results GQ-Fast-UA(Map) GQ-Fast-UA θ
SD 27,443,100 908.95 177.08 80.52%
FSD 27,307,529 1342.82 435.60 67.56%
AD 200,679 34.84 30.33 12.94%
FAD 56,518 31.63 25.95 17.96%
AS 20,019,297 7766.83 4510.11 41.93%
CS 5,057 10.06 8.62 14.31%

Table 9: GQ-Fast-UA vs. GQ-Fast-UA(Map) (in ms). The last
column shows the improvement where θ = 1− GQ−Fast−UA

GQ−Fast−UA(Map)
.

GQ-Fast-UA vs. GQ-Fast-UA(Bin). We conducted experiments to
evaluate the performance of retrieving fragments. Table 8 shows
the running time of different queries for GQ-Fast-UA(Bin) and GQ-
Fast-UA on PubMed-M and SemMedDB14. GQ-Fast-UA outper-
forms GQ-Fast-UA(Bin) for all queries. For example, GQ-Fast-UA
saves around 12% running time over GQ-Fast-UA(Bin) for Query
AS. In addition, we also observed that, queries with larger number
of lookup requests (FSD, AS and CS) benefit more compared to
queries with smaller number of lookup requests, e.g., SD and AD.

GQ-Fast-UA vs. GQ-Fast-UA(Map). We measured the benefit of
choosing an array for aggregation in GQ-Fast over a hash map by
comparing GQ-Fast-UA with GQ-Fast-UA(Map). As shown in Ta-
ble 9, GQ-Fast-UA outperforms GQ-Fast-UA(Map) for all queries.
GQ-Fast-UA performs better for the queries with a large output
(e.g., Query AS; GQ-Fast-UA saves about 33% of running time)
compared to queries with smaller output (e.g., Query CS).

14We achieve similar improvements in PubMed-MS.

# fragments # elements OMC-denseID GQ-Fast-UA
A1 7,484,532 51,730,682 4.12 1.02
A2 9,287,804 65,687,183 22.15 2.24
A3 87,467,470 619,809,092 74.90 5.38
A4 184,219,134 1,305,764,797 171.33 13.76
A5 585,932,678 4,153,322,719 297.47 49.01

Table 10: Avoiding Intermediate Results

Effect of Pipelining. In this experiment we compared OMC-denseID
with GQ-Fast-UA in order to measure the benefit of pipelining over
materializing intermediate results. OMC-denseID and GQ-Fast-
UA have the same lookup data structure and use an array for final
aggregation. Table 10 reports the running time of GQ-Fast-UA and
OMC-denseID on five instances of Query AS, where each instance
queries for another author ID, A1–A5. The number of accessed
fragments for those queries varies from around 7M to 585M. As
shown, GQ-Fast-UA outperforms OMC-denseID by a factor of 15.
As the number of accessed elements increases, the running time of
OMC-denseID increases significantly, since OMC-denseID mate-
rializes larger intermediate result columns.

Analysis of Different Encoding Methods. We analyzed the per-
formance (compression rate and decompression time) of all encod-
ing methods that are employed by GQ-Fast: uncompressed array
(UA), bit-aligned compressed array (BCA), byte-aligned bitmap
(BB) and Huffman encoding. Table 11 reports the encoded size of
each column in the PubMed-MS dataset. As shown, no single en-
coding is optimal for all columns. Adopting a suitable compression
method can significantly save space. For example, by using BB,
the space cost of dt1.Term reduced from 3660.29 MB to 1431.12
MB. The selection of a suitable compression method is based on
our analysis results in Section 4.

We also conducted experiments to evaluate the decompression
performance of these encoding methods for two kinds of (synthetic)
fragments: fragments on foreign key columns containing only unique
values (Table 12) and fragments on measure attributes with many
duplicates (Table 13). In the former case, we observed that BB
achieves the highest compression (saving 69.25% space) and the
highest decompression performance (about 30 times faster than
Huffman). Huffman has the worst performance, since the domain



UA BCA BB Huffman
dt1.Term 3605.55 2033.25 1376.39 1565.60
dt1.Fre 901.39 454.12 N/A 142.46
dt2.Doc 3605.55 2816.93 1047.71 2779.37
dt2.Fre 901.39 450.74 N/A 134.84
da1.Doc 245.26 198.75 187.54 325.70
da2.Author 245.26 183.95 205.10 275.56
dy.Year 57.17 14.20 N/A 14.29

Table 11: Size of Encoded Columns (MB). The bold fonts show
the minimal space for each column. BB only applies for fragments
with unique values, so dt1.Fre and dt2.Fre are not encoded by BB.
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Figure 9: Running Time for Query AS (PubMed-M, PubMed-MS
and Query CS (SemMedDB), 1–8 threads

size is large, which requires maintaining a large decoding table
(tree) that is too big for CPU L1/L2 caches. In the latter case, we
noticed that Huffman achieves the highest compression quality and
has decompression performance comparable to BCA, as shown in
Table 13. Compared to the results in Table 12, the decompression
performance of Huffman improved significantly, because the Huff-
man table can fit into the L1 cache when the domain size is small
(say 100). This result also indicates that Huffman is suitable for
measure attributes.

6.2.4 Additional Experiments
Effect of Multiple Threads. We evaluated the effect of multi-
ple threads for the overall performance. Figure 9 shows the run-
ning time of selected queries with 1–8 threads. Parallel process-
ing improves performance but does not scale linearly, mostly due
to skewed data. For example, the difference between the minimal
and maximal number of processed fragments in different threads is
around 2 million for Query AS. The skew problem can be solved
by employing load-balance algorithms.

Building/Serializing Indices. Table 14 reports the time for build-
ing indices in-memory. For GQ-Fast, this process takes a bit more
time than for GQ-Fast-UA, since it spends extra time on encoding
fragments. The last column shows the ratio, where r is the time re-
quired for reading data from disk to memory, which is 361.14s for
PubMed-M, 1283.32s for PubMed-MS, and 149.77s for SemMedDB.
Table 15 shows the time for (de)serializing indices from/to hard
disk. GQ-Fast can do that process faster, since indices are com-
pressed and thus smaller.

7. RELATED WORK
GQ-Fast Indices vs. Database Indices. Database indices (B+
trees, hash indices and bitmaps) are built on top of the original
tables, i.e., the database has both tables and indices. In contrast,
the entire dataset of a GQ-Fast database is in GQ-Fast indices. This
difference has repercussions in query processing. A database index
is given a key and returns row IDs. Depending on the system, a row
ID may be a tuple pointer, a block pointer or an array index. At any

rate, the database then accesses the tuples that are identified by the
row IDs and collects the relevant attributes in the original tables.
In contrast, the GQ-Fast index is a data-to-data index, which gets
rid of row IDs. Given a key and an attribute, it returns directly the
attribute values that relate to the particular key.

Comparison of Pipelining Methods. In row-oriented databases,
the top-down iterator model [16] reduces the memory footprint of
intermediate results. However, the top-down iterator model shows
poor performance on modern CPUs due to lack of locality, frequent
instruction mispredictions and too many function calls [30]. There-
fore, modern column databases choose either to (1) pass blocks of
tuples (batch-oriented processing) between operators, reducing the
number of function invocations [32, 30], or (2) materialize all in-
termediate results to eliminate the need of calling an input operator
repeatedly, which simplifies operator interaction [27, 19], or (3)
choose a middle way by passing large vectors of data and evaluat-
ing queries in a vectorized manner on each chunk [42].

However, none of the above techniques reaches the speed of
hand-written code [30]. GQ-Fast’s code generator compiles phys-
ical plans to code to improve performance. While many aspects
of GQ-Fast code generation (e.g., function call avoidance) have
been employed in previous work employing code generation15 GQ-
Fast produces code that is very close to what a human would do.
Crucially, the compiled code utilizes simple for-loops (e.g., see
Generated Code in Section 1) that access the elements in a frag-
ment. Tight for-loops create high instruction locality which elimi-
nates the instruction cache-miss problem. Intermediate results are
stored in loop variables, such as the vdt1.Term. Such simple loops
are amenable to compiler optimizations (e.g., register allocation of
loop variables) and CPU out-of-order speculation [19].

Data Cubes vs. Graph Analytics. The fact table of data cubes
involves typically k > 2 foreign keys. Hence, if we perceive the
fact table as a k-ary relationship, we would create k GQ-Fast in-
dices, inducing data redundancy that would eventually surpass the
compression advantages. Alternately, we could think of facts as en-
tities, connected to the dimensions via many-to-one relationships.
However, once we model a data cube in this way and apply GQ-Fast
to it, the benefit of GQ-Fast in performing paths of many-to-many
joins is not exhibited anymore. Hence, it becomes apparent that
data cube queries and graph queries are significantly different in
their SQL OLAP needs and GQ-Fast is tuned towards the latter.

Graph Processing. High-level graph engines allow users to write
in SQL or other declarative languages, e.g., Datalog, which is easier
to use but orders of magnitude slower [4] than low-level graph en-
gines [17, 31]. GQ-Fast meets the performance of low-level graph
engines while supporting a high-level programming interface. It is
worth mentioning that, EmptyHeaded [4] has the same design goal
as GQ-Fast but they have several differences: (1) GQ-Fast uses an
encoded fragment-based data structure, while EmptyHeaded em-
ploys a trie data structure; and (2) GQ-Fast focuses on CPU caching
effects, while EmptyHeaded focuses on leveraging SIMD (single-
instruction multiple-data) to speed up performance.

8. FUTURE WORK
In the future, we will investigate how GQ-Fast can be incorpo-

rated in a general SQL processor, where GQ-Fast will execute rela-
tionship subqueries and conventional query processing techniques
will be used to combine and process the output of GQ-Fast. We
will also study the pushing aggregation down optimization in order
to further improve the performance.

15Among others, generating code is used to speed up data cube queries [30],
view maintenance [5] and path-counting queries [28].



# elements per fragment # fragments compression ratio 1 thread 2 threads 4 threads 8 threads
BCA 100000±1000 8000 76.23% 1535.506 864.594 450.890 378.227
BB 100000±1000 8000 31.75% 1501.806 835.154 428.818 371.442
Huffman 100000±1000 8000 73.08% 52198.713 29688.662 14934.780 7925.446

Table 12: Space Cost and Decompression Time for BCA, BB, and Huffman. Domain size is 1 billion, data follows Zipf distribution with
factor s = 1.5. Fragments only contain unique values, which simulates fragments in foreign-key columns.

# elements per fragment # fragments compression ratio 1 thread 2 threads 4 threads 8 threads

BCA
100 8000000 21.88% 1581.167 801.313 410.039 348.422
10000000 80 21.88% 1286.579 652.020 333.645 283.507

Huffman
100 8000000 12.28% 5055.162 2543.277 1280.826 668.050
10000000 80 11.39% 4374.838 2201.003 1108.453 578.143

Table 13: Space Cost and Decompression Time for BCA and Huffman. Domain size is 100, data follows Zipf distribution with factor
s = 1.5. Fragments contain duplicates, which simulates fragments in measure attributes.

(1) GQ-Fast-UA (2) GQ-Fast (1)+r
(2)+r

PubMed-M 152.52 153.89 73.74%
PubMed-MS 540.33 561.02 72.54%
SemMedDB 74.68 103.30 66.15%

Table 14: Running Time for Building Indices (seconds)

Serializing index time Deserializing index time
GQ-Fast-UA GQ-Fast GQ-Fast-UA GQ-Fast

PubMed-M 139.52 60.50 152.52 70.46
PubMed-MS 495.10 163.92 540.33 187.17
SemMedDB 63.36 49.96 74.68 58.77

Table 15: Time for (De)serializing Indices (seconds)
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engine for graph processing. In SIGMOD, 2016.

[5] Y. Ahmad and C. Koch. DBToaster: A SQL compiler for high-performance
delta processing in main-memory databases. PVLDB, 2(2):1566–1569, 2009.

[6] G. Antoshenkov. Byte-aligned bitmap compression. In DCC, page 476, 1995.
[7] S. Bordoloi and B. Kalita. Designing graph database models from existing

relational databases. IJCA, 74(1), 2013.
[8] J. Catozzi and S. Rabinovici. Operating system extensions for the teradata

parallel VLDB. In VLDB, pages 679–682, 2001.
[9] S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP

technology. ACM Sigmod record, 26(1):65–74, 1997.
[10] C. Chen, X. Yan, F. Zhu, J. Han, and S. Y. Philip. Graph OLAP: a

multi-dimensional framework for graph data analysis. KAIS, 21(1):41–63, 2009.
[11] C. Chen, X. Yan, F. Zhu, J. Han, and P. S. Yu. Graph OLAP: Towards online

analytical processing on graphs. In ICDM, pages 103–112, 2008.
[12] P. Chen. Entity-relationship modeling: historical events, future trends, and

lessons learned. In Software pioneers, pages 296–310. Springer, 2002.
[13] K. Chung and J. Wu. Level-compressed huffman decoding. TCOM,

47(10):1455–1457, 1999.
[14] N. Colossi, W. Malloy, and B. Reinwald. Relational extensions for OLAP. IBM

Systems Journal, 41(4):714, 2002.
[15] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems: The

Complete Book. Prentice Hall Press, Upper Saddle River, NJ, USA, 2 edition,
2008.

[16] G. Graefe. Query evaluation techniques for large databases. CSUR,
25(2):73–169, 1993.

[17] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. Green-marl: a DSL for easy and
efficient graph analysis. In ISCA, volume 40, pages 349–362. ACM, 2012.

[18] V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword proximity search on
XML graphs. In ICDE, pages 367–378. IEEE, 2003.

[19] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S. Mullender, and M. L. Kersten.
MonetDB: Two decades of research in column-oriented database architectures.
DEBU, 35(1):40–45, 2012.

[20] H. Kilicoglu, M. Fiszman, A. Rodriguez, D. Shin, A. Ripple, and T. C.
Rindflesch. Semantic MEDLINE: a web application for managing the results of
PubMed searches. In SMBM, volume 2008, pages 69–76, 2008.

[21] H. Kilicoglu, D. Shin, M. Fiszman, G. Rosemblat, and T. C. Rindflesch.
SemMedDB: a PubMed-scale repository of biomedical semantic predications.
Bioinformatics, 28(23):3158–3160, 2012.

[22] D. E. Knuth. Dynamic huffman coding. Journal of algorithms, 6(2):163–180,
1985.

[23] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver, L. Doshi, and
C. Bear. The Vertica analytic database: C-store 7 years later. VLDB,
5(12):1790–1801, 2012.

[24] J. Li, H. Tseng, C. Lin, Y. Papakonstantinou, and S. Swanson. Hippogriffdb:
Balancing I/O and GPU bandwidth in big data analytics. PVLDB,
9(14):1647–1658, 2016.

[25] C. Lin, B. Mandel, Y. Papakonstantinou, and M. Springer. Fast in-memory SQL
analytics on relationships between entities. CoRR, abs/1602.00033, 2016.

[26] H. Ma, B. Shao, Y. Xiao, L. J. Chen, and H. Wang. G-SQL: Fast query
processing via graph exploration. PVLDB, 9(12), 2016.

[27] S. Manegold, M. L. Kersten, and P. Boncz. Database architecture evolution:
mammals flourished long before dinosaurs became extinct. PVLDB,
2(2):1648–1653, 2009.

[28] B. Myers, J. Hyrkas, D. Halperin, and B. Howe. Compiled plans for in-memory
path-counting queries. In IMDM@VLDB, pages 28–43. 2015.

[29] G. Navarro and N. Brisaboa. New bounds on D-ary optimal codes. Information
Processing Letters, 96(5):178–184, 2005.

[30] T. Neumann. Efficiently compiling efficient query plans for modern hardware.
PVLDB, 4(9):539–550, 2011.

[31] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight infrastructure for graph
analytics. In SOSP, pages 456–471. ACM, 2013.

[32] S. Padmanabhan, T. Malkemus, A. Jhingran, and R. Agarwal. Block oriented
processing of relational database operations in modern computer architectures.
In ICDE, pages 567–574, 2001.

[33] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and
M. Stonebraker. A comparison of approaches to large-scale data analysis. In
SIGMOD, pages 165–178. ACM, 2009.

[34] A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B.-j. P. Hsu, and K. Wang. An
overview of Microsoft Academic Service (MAS) and applications. In WWW,
pages 243–246. ACM, 2015.

[35] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira,
E. Lau, A. Lin, S. Madden, E. O’Neil, et al. C-store: a column-oriented DBMS.
In VLDB, pages 553–564, 2005.

[36] P. Vassiliadis and T. Sellis. A survey of logical models for OLAP databases.
ACM Sigmod Record, 28(4):64–69, 1999.

[37] D. W. Wardani and J. Kiing. Semantic mapping relational to graph model. In
IC3INA, pages 160–165. IEEE, 2014.

[38] F. Xia, Y. Li, C. Yu, H. Ma, and W. Qian. Bsma: A benchmark for analytical
queries over social media data. VLDB, 7(13):1573–1576, 2014.

[39] X. Xie. Potential friend recommendation in online social network. In
GreenCom, pages 831–835. IEEE, 2010.

[40] Z. Xu, S. Zhang, and Y. Dong. Mapping between relational database schema
and OWL ontology for deep annotation. In WI, pages 548–552. IEEE, 2006.

[41] S. Zhou. Exposing relational database as RDF. In IIS, volume 2, pages
237–240. IEEE, 2010.

[42] M. Zukowski, P. A. Boncz, N. Nes, and S. Héman. MonetDB/X100 – a DBMS
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