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Abstract

This work shows three optimizations for a 2D stencil computation: Parallelization with OpenMP, blocking in X
and Y directions, and vectorization using SIMD processor instructions. Performance is measured on the Tsubame 2.5
supercomputer of Tokyo Institute of Technology.

1 Problem Description: Diffusion

The base problem for this assignment is an iterative diffusion (2D stencil computation). Given a 2D matrix, the result of
one iteration is a new matrix of same size, but every value computed as the average of the old value and its four neighboring
values. A checksum is computed to ensure correctness of the following optimized versions.

1 #define NX 8194

2 #define NY 8194

3

4 float data[NY][NX][2];

5 double checksum = 0;

6 int from = 0;

7 int to = 1;

8

9 // Initialize data[from]

10

11 for (int n = 0; n < ITER; n++) {

12 for (int y = 1; y < NY - 1; y++) {

13 for(x = 1; x < NX - 1; x++) {

14 data[to][y][x] = 0.2 * (data[from][y][x]

15 + data[from][y][x-1]

16 + data[from][y][x+1]

17 + data[from][y-1][x]

18 + data[from][y+1][x]);

19 checksum += data[to][y][x];

20 }

21 }

22

23 from = (from + 1) % 2;

24 to = (to + 1) % 2;

25 }

System Environment All benchmarks were run on the TSUBAME 2.5 supercomputer running Linux x86 64 with kernel
version 3.0.76-0.11. The compiler for the C programs is gcc 4.3.4 and no optimization flags were used to isolate the effects
of the optimzations described in this work. Benchmarks were run on a thin node with 2x Intel Xeon X5670 processors each
of which has 6 cores (12 with hyperthreading), 32 KB data L1 cache per core, 256 KB L2 cache per core, 12 MB shared
L3 cache, a cache line size of 64 bytes for all caches, and supports SIMD instructions through MMX and SSE (in various
versions). The machine has 54 GB of main memory.

2 Parallelization with OpenMP

In this version, the outer loop of the stencil computation is parallelized with OpenMP. The program will spawn t =

OMP NUM THREADS many shared memory threads and every thread i ∈ [0, t) will compute the iteration range y = [ i·NY
t , (i+1)·NY

t ),
not accounting for rounding if NY does not divide evenly. This parallelization is done automatically by OpenMP and pro-
grammers only have to specify which loop should be parallelized and that the value checksum is shared by all threads and
should be reduced.

This optimized version also introduces blocking in X and Y direction. Blocking divides the matrix in a 2D grid of equally-
sized blocks and blocks are computed one by one. This can increase data locality and thus cache utilization. If BLOCK X and
BLOCK Y are set to 1, blocking is deactivated. Moreover, using OpenMP with a static scheduling strategy implicitly adds
another level of blocking in Y direction.

1 #include <omp.h>

2

3 #define NX 8194

4 #define NY 8194

5 #define BLOCK_X 1

6 #define BLOCK_Y 1



Practical Parallel Computing, Assignment 1 – Diffusion Matthias Springer, 15D54036 2

7

8 float data[NY][NX][2];

9 double checksum = 0;

10 int from = 0;

11 int to = 1;

12

13 // Initialize data[from]

14

15 for (int n = 0; n < ITER; n++) {

16 #pragma omp parallel

17 {

18 int x, y, x_base, y_base;

19

20 #pragma omp for reduction(+:checksum)

21 for (y_base = 1; y_base < NY - 1; y_base += BLOCK_Y) {

22 for (x_base = 1; x_base < NX - 1; x_base += BLOCK_X) {

23 for(y = y_base; y < y_base + BLOCK_Y; y++) {

24 for(x = x_base; x < x_base + BLOCK_X; x++) {

25 data[to][y][x] = 0.2 * (data[from][y][x]

26 + data[from][y][x-1]

27 + data[from][y][x+1]

28 + data[from][y-1][x]

29 + data[from][y+1][x]);

30 checksum += data[to][y][x];

31 }

32 }

33 }

34 }

35 }

36

37 from = (from + 1) % 2;

38 to = (to + 1) % 2;

39 }
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Figure 1: Performance Overview without any Blocking.

Benchmarks Tsubame 2.5 was used for benchmarking
the implementation shown above. Every blocking com-
bination (all powers of 2 up to 512 for both X and Y)
was run for 1 to 32 threads on a 8194 × 8194 square
matrix. The matrix size was chosen such that blocking
factors always divide the matrix evenly and no special
cases for the last/border blocks are required. Figure 1
gives an overview of the performance when no blocking is
used (BLOCK X = BLOCK Y = 1). In this case, it is best to
use 12 threads. This is because the a Tsubame thin node
has 12 cores. Using more threads cannot increase the per-
formance, i.e., this implementation does not benefit from
hyperthreading.

Figure 2 shows an overview of the performance with
only one thread but all blocking values in either X or
Y direction. In this case, choosing a blocking value of
BLOCK Y = 2 or BLOCK X = 512 is best. If blocking is
allowed in both X and Y direction, BLOCK X = 512 and
BLOCK Y = 16 reaches a performance of 283.3 MFLOP/s,

which is marginally better than just blocking in a single direction. In that combination, each block has 512 × 16 elements
and thus a size of 32 KB, which is the size of the L1 cache. Overall, this implementation does not benefit much from blocking
when only one thread is used.

Figure 3 shows an overview of the performance with 12 threads and all blocking values in either X or Y direction. In that
case, choosing a blocking value of BLOCK Y = 2 or BLOCK X = 512 is best. If blocking is allowed in both X and Y direction,
BLOCK X = 512 and BLOCK Y = 1 is best at a performance of 3151.2 MFLOP/s, which is a good speedup. Using OpenMP and
explicit blocking effectively results in two levels of blocking: First, every thread is assigned a block of size 8194× (8194/12).
Second, within a thread, explicit blocking is applied. It is unclear why the best performance is reached at the reported
combination, because it matches neither the L1 nor the L2 cache size.
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Figure 2: Performance for #threads = 1, blocking in only X or Y direction.
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Figure 3: Performance for #threads = 12, blocking in only X or Y direction.
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Figure 4: Performance Overview: All blocking combinations (powers of 2) in X and Y direction.
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3 Loop Unrolling

In this version, the innermost loop is unrolled twice, i.e., every iteration computes two elements. This is beneficial if a
processor has multiple arithmetic units per core and gives rise to instruction-level parallelism. In contrast, the speedup
gained in the previous section is due to thread-level parallelism. If l is the level of unrolling of the innermost loop (here
l = 2), then BLOCK X ≥ l. Otherwise, results will be computed redundantly.

1 #define BLOCK_X 2 // Must be >= 2

2 #define BLOCK_Y 1

3

4 #pragma omp for reduction(+:checksum)

5 for (y_base = 1; y_base < NY - 1; y_base += BLOCK_Y) {

6 for (x_base = 1; x_base < NX - 1; x_base += BLOCK_X) {

7 for(y = y_base; y < y_base + BLOCK_Y; y++) {

8 for(x = x_base; x < x_base + BLOCK_X; x+=2) {

9 data[to][y][x] = 0.2 * (data[from][y][x]

10 + data[from][y][x-1]

11 + data[from][y][x+1]

12 + data[from][y-1][x]

13 + data[from][y+1][x]);

14 checksum += data[to][y][x];

15

16 data[to][y][x+1] = 0.2 * (data[from][y][x+1]

17 + data[from][y][x]

18 + data[from][y][x+2]

19 + data[from][y-1][x+1]

20 + data[from][y+1][x+1]);

21 checksum += data[to][y][x+1];

22 }

23 }

24 }

25 }

Benchmarks Unrolling iterations for X allows for thread-level parallelism but does overall not increase the performance
much compared to only blocking. Figure 5 gives an overview of the performance with all combinations of blocking and either
2 or 4 unrolled iterations. The best performance with 2 unrolled iterations is reached at BLOCK X = 512 and BLOCK Y = 2
with 24 threads at 3368.8 MFLOP/s. The best performance with 4 unrolled iterations is reached at BLOCK X = 128 and
BLOCK Y = 1 with 24 threads at 3396.7 MFLOP/s.

4 Vectorization of Unrolled Code

This final optimization builds on top of the previous optimization. The innermost loop is unrolled with a factor of l = 4 and
the computation utilizes vectorized SIMD registers and instructions. The type m128 denotes a 128 bit value containing four
32 bit floating point numbers. After loading values into the registers1, arithmetic operations such as mm add ps for addition
or mm mul ps for multiplication can be performed on all four values in parallel.

1 #include <emmintrin.h>

2

3 #define BLOCK_X 4 // Must be >= 4

4 #define BLOCK_Y 1

5

6 const __m128 factor = _mm_set1_ps(0.2);

7

8 #pragma omp for reduction(+:checksum)

9 for (y_base = 1; y_base < NY - 1; y_base += BLOCK_Y) {

10 for (x_base = 1; x_base < NX - 1; x_base += BLOCK_X) {

11 for(y = y_base; y < y_base + BLOCK_Y; y++) {

12 for(x = x_base; x < x_base + BLOCK_X; x+=4) {

13 __m128 v1 = _mm_loadu_ps(&data[from][y][x]);

14 __m128 v2 = _mm_loadu_ps(&data[from][y][x-1]);

15 __m128 v3 = _mm_loadu_ps(&data[from][y][x+1]);

16 __m128 v4 = _mm_loadu_ps(&data[from][y-1][x]);

1Operation: mm loadu ps; the u is required because memory addresses are not necessarily aligned.
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(a) Unrolling 2 Iterations of X
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(b) Unrolling 4 Iterations of X

Figure 5: Performance Overview with Unrolling: All blocking combinations (powers of 2) in X and Y direction.
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17 __m128 v5 = _mm_loadu_ps(&data[from][y+1][x]);

18

19 __m128 vr = _mm_mul_ps(

20 _mm_add_ps(

21 _mm_add_ps(v1, v2),

22 _mm_add_ps(v3,

23 _mm_add_ps(v4, v5))), factor);

24

25 _mm_storeu_ps(&data[to][y][x], vr);

26

27

28 checksum += data[to][y][x];

29 checksum += data[to][y][x+1];

30 checksum += data[to][y][x+2];

31 checksum += data[to][y][x+3];

32 }

33 }

34 }

35 }

Benchmarks Vectorization increases the performance of factor-4 unrolled code dramatically. The best performance is
reached with BLOCK X = 128, BLOCK Y = 2 and 24 threads at 5602.2 MFLOP/s. Figure 6 gives an overview of the performance
in all measured configurations. Figure 7 shows the performance overview for a smaller matrix of size 4098 × 4098. The best
performance is reached with BLOCK X = 256, BLOCK Y = 1 and 24 threads at 5695.5 MFLOP/s, which is similar to the bigger
matrix. Overall, the implementation performs similar on both matrix sizes; however, the performance numbers seem a bit
more regular on bigger matrices, which could also be due to the fact that caching effects are more prevalent on bigger data
sets. A bigger matrix size could not be run on Tsubame because the job submission system killed such tasks due to excessive
memory usage.

When looking at specific configurations, their performance can often be explained with caching effects. For example, the
best configuration with 30 threads on the small matrix is BLOCK X = 32 and BLOCK Y = 64. With 30 threads, every thread
processes a range of 4096/30 = 135 elements in Y direction. With a blocking factor of 32 in X direction, this results in blocks
of size 135× 32, each of which has a size of 17 KB. Blocks of this size fit into the L1 cache, whereas this is no longer the case
for bigger X blocking of 64 or more.

1
2
4
8

16
32
64

128
256
512

1
2
4
8

16
32
64

128
256
512

1
2
4
8

16
32
64

128
256
512

1 2 4 8
1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
2
4
8

16
32
64

128
256
512

1 2 4 8
1
6

3
2

6
4

1
2
8

2
5
6

5
1
2 1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2 1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2 1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2 1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2 1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2 1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

0 1500 3000 4500

Figure 6: Performance Overview with Vectorization: All blocking combinations (powers of 2) in X and Y direction.
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Figure 7: Performance Overview with Vectorization (Small Matrix)

Finally, Figure 8 compares the overall performance of the implementation without any unrolling or vectorization with
the performance of the implementation where X is unrolled for 4 iterations and those 4 operations are vectorized on a big
matrix (8194 × 8194). For every number of threads, the best combination of blocking factors in X and Y direction is chosen.
The graphs shows that those optimizations always pay off.
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Figure 8: Performance Overview with/without Unrolling and Vectorization: For every number of threads, the best blocking
combination (X and Y) is chosen.


