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Abstract
We propose CompactGpu, an incremental, fully-parallel,
in-place memory defragmentation system for GPUs. Com-
pactGpu defragments the heap in a fully parallel fashion
by merging partly occupied memory blocks. We developed
several implementation techniques for memory defragmen-
tation that are efficient on SIMD/GPU architectures, such as
finding defragmentation block candidates and fast pointer
rewriting based on bitmaps.
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Extended Abstract
Memory fragmentation is a challenging problem of dynamic
memory allocators and has been widely studied on single-
core and multi-core CPU systems. However, despite the re-
cent popularity of massively parallel SIMD architectures
such as GPUs, the memory fragmentation problem has not
been studied thoroughly on such architectures.
We have to study memory (de)fragmentation on such

architectures because allocations follow different patterns:
Most allocations are small in size and due to mostly regular
control flow, many allocations have the same byte size. Such
specialties must be exploited by memory defragmentation
systems to achieve good performance.

Effects of Fragmentation High fragmentation leads to
three main disadvantages.
• Premature Out-of-Memory: Large allocations cannot be
accommodated even if there is enough free memory
overall (external fragmentation).
• Low Cache Hit Rate: Poor data locality causes poor
cache performance [4].
• Low Vector Load/Store Efficiency: SIMD vector/load
store instructions are less efficient.

BackgroundandContributions WedevelopedCompact-
Gpu, an incremental, fully-parallel, in-place memory defrag-
mentation systems for GPUs on top of the DynaSOAr dy-
namic memory allocator [8] for CUDA. While the basic con-
cept of CompactGpu is applicable to many other GPU allo-
cators, we chose DynaSOAr because it allocates objects in
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Figure 1. Relocating objects from a source block to 3 target blocks
(n = 3). All blocks have a fill level of no more than n

n+1 = 75%. Only
2 target blocks are required in this example. The third target block
remains untouched.

a Structure of Arrays (SOA) data layout and lets us explore
the effect of fragmentation on vector load/store instructions.

CompactGpu is built upon ideas from other systems. Sim-
ilar to the only other GPU memory defragmentation system
by Veldema and Philippsen [9], CompactGpu merges mem-
ory blocks that have a low fill level. As many other systems,
CompactGpu stores forwarding pointers at old memory loca-
tions [2, 6] and performs a subsequent heap scan to rewrite
pointers to relocated objects; other techiques (e.g., recom-
puting pointers on-the-fly [5]) did not pay off. CompactGpu
improves upon other systems with three main ideas.

Bitmaps CompactGpu uses bitmaps to choose source/
target blocks and to quickly decide if a pointer must
be rewritten.

Configurability The desired fragmentation rate after
defragmentation can be configured.

Efficient Implementation CompactGpu exhibitsmostly
regular control flow, accesses memory in GPU-friendly
patterns and requires no synchronization between
threads.

Requirements To apply the CompactGpu technique to an
existing GPU allocator, we require that...
• ... the allocator is block based.
• ... a block contains allocations of a fixed byte size.
• ... every block has the same byte size, so all blocks of a
given allocation size have the same number of objects.

Many state-of-the-art GPU allocators fulfill these require-
ments [1, 3, 8].
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Figure 2. Computing a compact indices array from a defragmenta-
tion candidate bitmap and determining source/target blocks (n = 2).

We define fragmentation as the average free level of all
blocks that contain allocations. E.g., if blocks are on average
40% full, then the fragmentation level is 60%. This means
that the memory consumption could be lowered by 60% if
blocks were compacted.

Design of CompactGpu CompactGpu compacts the heap
by merging a source block into n target blocks, where n is a
configurable parameter, assuming that both blocks have the
same allocation size.
A source block can be merged into n target blocks if all

n+1 blocks are no more than n
n+1 full (Figure 1). We call non-

empty blocks with a fill level of ≤ n
n+1 defragmentation candi-

dates. A single defragmentation pass is guaranteed to elimate
all source blocks, i.e., 1

n+1 of all defragmentation candidates.
In addition, some target blocks may become so full that they
are no longer defragmentation candidates. CompactGpu
compacts the heap by running multiple of defragmentation
passes. After multiple passes, when all defragmentation can-
didates are eliminated, the fragmentation level is guaranteed
to be lower than 1 − n

n+1 =
1

n+1 , because only blocks with a
fill level of more than n

n+1 or higher are left over.
CompactGpumaintains a defragmentation candidate bitmap

for every possible allocation size by extending (de)allocation
procedures of DynaSOAr. To run a defragmentation pass for
a certain allocation size, CompactGpu converts the bitmap
into an indices array and compacts it using a parallel prefix
sum pass1 (Figure 2).
If there are r defragmentation candidates, then the first

B =
⌊

r
n+1

⌋
blocks with indices R[0] through R[

⌊
r

n+1

⌋
−1] are

source blocks. Given a source block R[rid], its corresponding
target blocks are:

{
R[rid + i · B] ��� i ∈ 1...n

}

Objects are moved from source blocks to target blocks in
parallel. No synchronization is required among threads. Af-
terwards, forwarding pointers are stored in the source blocks
and the heap is scanned for pointers that should be rewritten.
We utilize the defragmentation candidate bitmap and the ar-
ray R to quickly decide if a pointer ptr must be rewritten.
1We use the prefix sum implementation of the CUB library [7].
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Figure 3. Synthetic benchmark. (left) Number of defragmentation
passes. (right) x-axis: initial fragmentation, y-axis: fragmentation
after defragmentation.
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Figure 4. Benchmark: Simulation of a fracture in composite mate-
rial (finite element method).
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Figure 5. Benchmark: Generational cellular automaton.

Assuming ptr points to an object in block bid, we retrieve the
forwarding pointer from that block only if bid < R[B] and
the bit bid in the defragmentation candidate bitmap is set.
Defragmentation candidate bitmaps are small and fit into
L1/L2 caches, and R[B] is constant during a defragmentation
pass, so pointer rewriting is very fast.

Preliminary Evaluation We evaluted CompactGpu on
an NVIDIA Titan Xp with a synthetic benchmark that first
allocates many objects and then deallocates 60% of them at
random (leading to 60% initial fragmentation). Figure 3 (left)
shows the number of defragmentation passes required to
eliminate all defragmentation candidates for different values
of n, along with the achieved fragmentation level. Just 1–3
passes are enough to eliminate most fragmentation. In the
right graph, the initial fragmentation level is changed (x-axis)
and the achieved target fragmentation rate is shown on the
y-axis. The achieved fragmentation rate is much lower than
the theoretical upper bound of 1

n+1 (dashed lines).
Figures 4 and 5 show a memory profile (left) and appli-

cation running time (right) of two DynaSOAr benchmarks,
for various values of n. The memory profile shows the over-
all memory consumption (lines) and the actual sum of all
allocations broken down by allocation size (shaded area).
CompactGpu can significantly lower memory usage and
speed up applications by up to 14.5% due to better cache
utilization and more efficient vector access. Memory access
performance gains are higher than CompactGpu’s overhead.
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