A comparison of Context-Oriented and
Aspect-Oriented Programming

Matthias Springer

Hasso Plattner Institute, Advanced Modularity, seminar paper

Abstract. Aspect-oriented programming and context-oriented program-
ming were designed to modularize cross-cutting concerns that would oth-
erwise lead to scattered code. We illustrate conceptual differences be-
tween aspect-oriented programming and context-oriented programming
in order to point out which technique should be used for a given use case.
Besides, we motivate that pointcuts and immediate layer activation no-
tifications can be useful in context-oriented programming.

1 Software development for mobile devices

In this paper, we will compare aspect-oriented programming and context-oriented
programming, two techniques for modularizing cross-cutting concerns. We will
show two typical use cases in the area of mobile devices, immediate feedback and
power management, that we will implement using aspect-oriented programming
and context-oriented programming.

1.1 Immediate feedback

Haptic feedback and auditive feedback are well-known patterns in human-com-
puter interaction [7]. The idea is to provide immediate feedback to user input,
such that the user can be certain that the device received the input. In this
example the mobile device should vibrate for a quarter of a second after the user
touched the touch screen or pressed a keyboard button or another hardware
button. Alternatively, the device should play an unobtrusive click sound.

1.2 Power management

Figure 1 shows four power states for a mobile device. If the battery charge level
is 50% or greater, then the device is in the high battery state. In that state, no
power saving mechanisms are activated, i.e. the device behaves as if no power
management would be present.

The medium battery state activates some minor power saving mechanisms,
if the battery charge level is lower than 50%. The sound volume is reduced by
50% and the display brightness is dimmed by 50% after five seconds without
user input.

[battery < 10%] critical battery state
medium + low + critical battery layer active
[battery < 25%)] low battery state

medium + low battery layer active

[battery < 50%] medium battery state
medium battery layer active

[true] high battery state

no layers active

Fig. 1. Layered power states for mobile power management.

If the battery charge level drops below 25%, further battery saving mechanisms
from the low battery state are actived, in addition to the already activated
mechanisms from the medium power state. The sound volume is reduced by
another 50% and the Wifi bandwidth is reduced. Furthermore, the display is
turned off after 10 seconds without user input.

The critical power state is activated, if the battery charge level drops below
10%. Power saving mechanisms from the low and the medium battery state re-
main active. In addition, the critical power state deactivates Wifi entirely and
deactivates launching non-critical applications like games and multimedia appli-
cations.

2 Previous work

Apel et al. found out that cross-cutting concerns can be classified as homogenous
or heterogeneous cross-cutting concerns [1].

Kiczales et al. presented the concept of aspect-oriented programming [11] as
a means to modularize cross-cutting concerns in object-oriented software com-
ponents. AspectJ [10] is an aspect-oriented extension of the Java programming
language and a fully developed programming language that is widely used in
software development and in research. Aspect-oriented extensions exist for most
well-established object-oriented programming languages [12].

Hirschfeld et al. proposed a similar concept called context-oriented program-
ming [9] for modularizing context-dependent cross-cutting concerns in object-
oriented software systems. With JCop, Appeltauer and Hirschfeld provided a
context-oriented extension of the Java programming languages. Furthermore,
context-oriented extensions exist for Lisp, Smalltalk, Python, Ruby and Java-
Script [3].

In Section 3, we will show that immediate feedback is a homogeneous cross-
cutting concern and provide an AspectJ implementation. In Section 4, we will
show that power management is a heterogeneous cross-cutting concern and pro-
vide a JCop implemation. Section 5 will compare both paradigms.

3 Homogeneous cross-cutting concerns

Cross-cutting concerns that add the same behavioral variation at multiple points
in the program are called homogeneous [1]. We will now explain, how aspect-
oriented programming can be used to modularize homogenous cross-cutting con-
cerns.

3.1 Basic concepts of aspect-oriented programming

With aspect-oriented programming, we can specify that certain code, called ad-
vice, should be executed at well-definied points in the execution of the program.
These well-defined points are called join points and every implementation of an
aspect-oriented programming language has its own join point model, i.e. a def-
inition of where advice code can be executed. We can use pointcut designators
to define a set of join points that can be advised by advice. This is useful for
homogeneous cross-cutting concerns, where the same piece of advice must be
executed at a set of join points. Modularized cross-cutting concerns are called
aspects and consist of pointcuts and advice code.

3.2 Example: Immediate feedback for mobile devices

For immediate feedback, the same piece of code, feedback in Figure 2, needs
to be executed before the methods for handling the respective input events are
executed. We therefore call immediate feedback a homogeneous cross-cutting
concern.

VibrationMotor <<use>> <<aspect>> <<crosscut>> KeyboardInput
+vibrate(duration) [N~ 777777 ImmediateFeedback (77777772 +handleKeyStroke(key)
-feedbackType
AudioDevice <<use>> <<advice>> +feedback()
+playSound(file) [T 77777 <<pointcut>> +inputHandled() | S<erosscut>>_ Touchlnput
+handleDisplayTouch(x, y)

Buttonlnput
<<crosscut>> +handleQuietButtonPressed()
---------- >|+handleLoudButtonPressed()
+handlePowerButtonPressed()

Fig. 2. Aspect-oriented implementation of immediate feedback for input events.

In Figure 2, the pointcut inputHandled designates all methods in KeyboardInput,
TouchInput and ButtonInput for handling input events, i.e. all methods starting
with handle.

3.3 Implementation with AspectJ

Listing 3 shows an implementation of immediate feedback for input events with
AspectJ. The aspect concentrates all feedback-related code at a single position.
In an ordinary Java implementation, code fragements for invoking the advice
code would be scattered among all input handler classes.

aspect ImmediateFeedback {

public static enum FeedbackMode {
NONE, AUDITIVE, HAPTIC

}

private FeedbackMode feedbackMode;

pointcut inputHandled () :
execution (public void handlex(..));

before (): inputHandled () {
if (feedbackMode == FeedbackMode.AUDITIVE) {
AudioDevice. playSoundfile (” click .wav”) ;

else if (feedbackMode = FeedbackMode.HAPTIC) {
VibrationMotor. vibrate (0.25) ;

}

}

Fig. 3. Implementation of immediate feedback with AspectJ.

An AspectJ aspect may have fields and methods, implement interfaces and ex-
tend other aspects. Therefore, we can use an aspect like a class, except for
instantiating it explicitly.

4 Heterogeneous cross-cutting concerns

Cross-cutting concerns that add different behavioral variations at multiple points
in the program are called heterogeneous [1]. We will now explain how the concept
of context-oriented programming can be used to modularize such cross-cutting
concerns.

4.1 Basic concepts of context-oriented programming

Context-oriented programming allows us to specify that certain methods should
be supplemented with additional behavior or be replaced entirely, based on con-

textual information. Contextual information is any data computationally acces-
sible in the program.

We call methods that are modified base methods. Base methods are sup-
plemented by partial method definitions, just as advice code adds additional
behavior at various join points in aspect-oriented programming. Partial method
definitions are enclosed in layers, just as pointcuts and advice are enclosed in
aspects. The runtime environment decides which layers are activated, based on
contextual information. Multiple layers may be activated at the same time, thus
allowing multiple partial method definitions for the same base method to be
active at the same time, just as multiple pieces of advice may advise a single
join point.

4.2 Example: Power management for mobile devices

Power management is mostly a heterogeneous cross-cutting concerns, because
multiple base methods are supplemented with different behavior. For exam-
ple, in Figure 4, Shell.runApplication(file) and AudioDevice.write(data,
volume) are supplemented with different partial methods.

DisplayDevice
<<yuse>> |*setBrightness(brightness;
oo - > +turnOn(
1 +urnOff()
'
1
1
'
' <<crosscut>>
!
<<contextclass>> <<layer>> 1 KeyboardInput
PowerManagement MediumPowerState : I~ |77 |+handleKeyStroke(key)
-activeLayers : Poy 0 displayTimer - ---- 'L:
+batteryUpdate(chargelLevel) : {of +AudioDevice.writ volume) :
<<layerActivation>> +with(activeLayers) | <<partial>> +*Input.handle*(..) T T
1 1 +handleDisplayTouch(x, y)
1 1 '
i <<layer>> "
' 1
<<Interface>> 1 LowPowerState [Buttonlnput
PowerState : -displayTimer | : :’ ~|””|+handleQuietButtonPressed()
+layerActivated() ! parti +AudioDevice.wrif volume) [- - - - - - B +handleLoudButtonPressed()
+layerDeactivated() < - 'I" [~ [<<partial>> +*Input.handle*(..) TR : +handlePowerButtonPressed()
' <<partial>> +WifiDevice.write(data) : '
' i
: ; : : AudioDevice
' <<layer>> ~ 7|7 >|#write(data, volume)
v _9_ CriticalPowerState | __ _ _ _ J' —
partial>> +Shell ication(file) ~ F---- "
Le-d D WifiDevice
: +write(data)
. . '
Application launcher !
Shell
. . '
Display brightness - = = =|->[runAppiication(fie)
Sound volume
Wifi

Fig. 4. Context-oriented implementation of power management for mobile devices.

However, all methods for input handling starting with handle share the same
partial method. Therefore, we can consider the display brightness control part
in power management a homogeneous cross-cutting concern. Having said that,

we may at the same time consider it a heterogenous cross-cutting concern as
different partial method combinations are applied, based on the current battery
charge level.

4.3 Implementation with JCop

Context evaluation and layer activation. Listing 7 shows the context class Pow-
erManagement that is responsible for activating and deactivating layers. Power-
Management observes the battery and receives updates on charge level changes.
These updates are needed only for layer-specific actions on layer activation
or deactivation, i.e. when the layer activation condition is satisfied or unsat-
isfied for the first time since the last deactivation or activation. For instance,
CriticalPowerState must activate or deactivate the Wifi in layerActivated
or layerDeactivated.

If the power states consisted of partial method definitions only, then we would
need neither the observer nor the activeLayers field nor the PowerState inter-
face. We could then implement layer (de)activation using when-with statements
only.

Power state implementation as a layer. Listing 8 shows the low power state
layer. The thread displayTimer is activated on layer activation and when the
mobile device receives input from the touch display, the keyboard or a hardware
button®. At first the display is undimmed, then the five seconds dim timer is
reset. Futhermore, MediumPowerState contains a partial method definiton for
AudioDevice.write that lowers the volume parameter by 50%.

4.4 Implementation issues: Initial layer activation and deactivation

Context-oriented programming provides a mechanism to supplement base meth-
ods with additional behavior if a certain layer is activated. Sometimes this is not
enough. In the previous example we discovered cases where some code had to be
executed immediately after a layer was activated or deactivated.

For instance, immediately after the mobile device enters the low power state,
the display dim timer has to start, even if the user does not make any input.
Similarly, the timer must be stopped and the display brightness restored if the
mobile device leaves the low power state.

Wifi deactivation in the critical power state is another example that is trig-
gered merely on layer activation or deactivation.

So far, neither the paradigm of context-oriented programming nor ContextJ
or JCop provide a concept that simplifies code execution on layer (de)activation.
In Listing 7 we simulated this behavior by observing the battery? and calling
layerActivated and layerDeactivated on layer recomposition.

! Only the partial method for handleDisplayTouch in shown in Listing 8 but identical
partial methods exist for the other four input handlers.

2 The current JCop implementation does not allow context classes to implement in-
terfaces, thus in reality requiring the Java Reflection API.

O© 00~ O O W N

A context-oriented programming language could monitor layer activation
conditions the whole time and call layerActivated and layerDeactivated on
its own if these methods are provided by the programmer. Monitoring activation
conditions can be done by polling the condition repeatedly or by providing an
observer interface. The implementation of polling is trivial but it can cost too
much performance.

contextclass PowerManagement implements Observer<float> {
when (updateValue() < 0.50f): with(MediumPowerState) ;

when (updateValue() < 0.25f): with(LowPowerState);

when (updateValue() < 0.10f): with(CriticalPowerState);

Fig. 5. JCop observer syntax proposition.

Listing 5 shows how an observer concept provided by the programming language
could look like on the programmer’s side. Observer serves as a marker interface
and provides the generic type of the observer update parameter. updateValue
returns the (cached) value from the last observer update. When an update is
triggered layers are automatically notified about their (de)activation, exactly as
in Listing 7, but with less code.

5 Conceptual and implementational differences

In this section, we compare aspect-oriented programming and context-oriented
programming and their implementations AspectJ and JCop.

5.1 Homogeneous and heterogeneous cross-cutting concerns

Hirschfeld et al. mention that context-oriented programming aims at modu-
larizing heterogeneous cross-cutting concerns. This is illustrated by the fact
that context-oriented programming has no concept of pointcuts and that partial
methods always extend only one base method.

Aspect-oriented programming, in contrast, allows advice code to be executed
at multiple join points, thus allowing the modularization of both types of cross-
cutting concerns.

Most context-depending cross-cutting behavior variations in Figure 4 are
heterogeneous. However, in Section 4.2, we realized that diplay brightness control
can to some degree be considered a homogenous cross-cutting concern, because

© 00 3O Ui W N~

the partial method for dimming or turning on/off the display must be applied to
multiple base methods. In that case, we would benefit from a pointcut designator,
as we would not have to repeat multiple partial method definitions with the same
code.

Apart from the join point model in aspect-oriented programming, such a con-
ceptual change would, to some extent, make context-oriented programming an
extension of aspect-oriented programming. We can then map the basic concepts
of aspect-oriented programming directly to concepts of context-oriented pro-
gramming?. However, this is not true for more advanced concepts like inter-type
declarations and declare statements in AspectJ.

5.2 Inter-type declarations

Aspect-oriented programming offers advanced mechanisms to change a module’s
structure. Inter-type declarations in AspectJ are used to add new methods to
classes or to change the class hierarchy. With the declare parents statement,
we can define that a class implements a specific interface or extends a specific
class?.

Context-oriented programming provides no mechanisms of changing the class
hierarchy or adding new methods. Partial method definitions in JCop (Listing 6)
might sytactically look similar to inter-type declaration for adding methods in
AspectJ, but they can in fact only add new behavior to already existing methods.

layer LowPowerState {

public void AudioDevice.write (byte[] data, float volume) {
proceed (data, 0.5f % volume);

}

Fig. 6. JCop partial method definition.

5.3 Activation of behavioral variations

The term context-oriented programming is derived from the idea that contextual
information decides whether a layer is activated or not. The way layers are
(de)activated varies strongly among context-oriented programming languages.

3 Partial method definition — advice, join point model — reduced join point model

(execution only), pointcut — pointcut, aspect — layer.
4 There are certain limitations if the class already has a superclass. The new superclass
must have the original superclass in its inheritance hierarchy.

The predecessor of JCop, ContextJ [4], supported context (de)activation
through with and without statements only. JCop adds a declarative syntax
for layer (de)activation [5]. Basically, every time a method is invoked, JCop first
computes all activated layers by evaluating all when-with statements [2]. These
statements typically fall back on fields or methods of the context class, that
provide and interprete the relevant contextual information. Afterwards, partial
methods and base method are executed.

In contrast, AspectJ weaves in aspects at compile time [8], making dynamic
aspect activation impossible. CaesarJ supports aspect activation at runtime [6].
But CaesarJ still does not feature a concept similar to context classes or declar-
ative layer activation, making it difficult to coordinate layer (de)activation.

Therefore, context-oriented programming fits best for use cases where some
behavioral variations must be chosen out of many possible variations, based on
contextual information. Aspect-oriented programming fits best for static behav-
ioral variations that are usually not activated or deactivated at runtime.

5.4 Join point model

The join point model in aspect-oriented programming languages defines at which
points in the execution of the program advice code can be weaved in. The con-
crete join point model depends on the implementation, but most implemenations
support at least method execution and method call®. AspectJ support more join
points like constructor execution and field access [10].

In Section 5.1, we tried to map concepts of aspect-oriented programming
to concepts of context-oriented programming and noticed that context-oriented
programming provides only a very restricted join point model. The only sup-
ported join point is method execution. This fits to the basic idea of context-
oriented programming that certain classes behave differently under certain cir-
cumstances, by supplementing base methods (method execution) with additional
behavior.

If we need a more sophisticated join point model, e.g. in order to change the
constructor or control field access, we therefore should use aspect-oriented pro-
gramming. Such behavioral variations tend to be non-dependent on contextual
information but to be rather static, anyway.

6 Conclusion

In the previous sections we found out that aspect-oriented programming is suit-
able for modularizing homogeneous cross-cutting concerns that are more or less
static at runtime, i.e. no or only little aspect activation or deactivation is dynam-
ically done at runtime. Furthermore, aspect-oriented programming languages
typically feature a rich join point model and provide advanced mechanisms to
change a module’s structure.

5 At that point, information about the sender is still available.

10

Context-oriented programming, on the other hand, aims primarily at modu-
larizing heterogeneous cross-cutting concerns with behavioral variations that are
composed dynamically at runtime. We showed, though, that in some use cases
we would benefit from pointcut designators. Such concepts might be addressed
in future versions of context-oriented implementations.

References

1. Sven Apel, Don Batory, and Marko Rosenmller. On the structure of crosscutting
concerns: Using aspects or collaborations. In In Workshop on Aspect-Oriented
Product Line Engineering, 2006.

2. Malte Appeltauer and Robert Hirschfeld. The jcop language specification. Tech-
nische Berichte Nr. 59, 2012.

3. Malte Appeltauer, Robert Hirschfeld, Michael Haupt, Jens Lincke, and Michael
Perscheid. A comparison of context-oriented programming languages. In Interna-
tional Workshop on Context-Oriented Programming, COP ’09, pages 6:1-6:6, New
York, NY, USA, 2009. ACM.

4. Malte Appeltauer, Robert Hirschfeld, Michael Haupt, and Hidehiko Masuhara.
Contextj: Context-oriented programming with java. Journal of the Japan Society
for Software Science and Technology (JSSST) on Computer Software, 28(1):272—
292, 2011.

5. Malte Appeltauer, Robert Hirschfeld, Hidehiko Masuhara, Michael Haupt, and
Kazunori Kawauchi. Event-specific software composition in context-oriented pro-
gramming. In Proceedings of the 9th international conference on Software compo-
sition, SC’10, pages 50—65, Berlin, Heidelberg, 2010. Springer-Verlag.

6. Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. An overview
of caesarj. T. Aspect-Oriented Software Development I, pages 135-173, 2006.

7. Stephanie Foehrenbach, Werner A. Knig, Jens Gerken, and Harald Reiterer. Natu-
ral interaction with hand gestures and tactile feedback for large, high-res displays.
In MITH 08: Workshop on Multimodal Interaction Through Haptic Feedback, held
in congunction with AVI 08: International Working Conference on Advanced Visual
Interfaces, May 2008. Workshop Research Paper.

8. Erik Hilsdale and Jim Hugunin. Advice weaving in aspectj. In AOSD, pages 26-35,
2004.

9. Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-oriented
programming. Journal of Object Technology, March-April 2008, ETH Zurich,
7(3):125-151, 2008.

10. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of aspectj. In Proceedings of the 15th Eu-
ropean Conference on Object-Oriented Programming, ECOOP ’01, pages 327-353,
London, UK, UK, 2001. Springer-Verlag.

11. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean marc Loingtier, and John Irwin. Aspect-oriented programming. In ECOOP.
SpringerVerlag, 1997.

12. Luis Miguel Lourenco, Nuno Cerqueira, Pedro Corte-Real, and Rui Barbosa. As-
pect oriented programming comparing programming languages. 2005.

0~ O O W N~

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

A

11

Appendix

contextclass PowerManagement implements BatteryObserver {

private PowerState[] activeLayers;

private PowerState criticalState = new CriticalPowerState();
private PowerState lowState = new LowPowerState () ;
private PowerState mediumState = new MediumPowerState () ;

public void batteryUpdate(float chargeLevel) {

}

when(true): with(activeLayers);

PowerState [| newLayers = [];

if (chargeLevel < 0.50f)
newLayers += mediumState;

if (chargeLevel < 0.25f)
newLayers += lowState;

if (chargeLevel < 0.10f)
newLayers += criticalState;

for (PowerState layer : activeLayers — newLayers)
layer.layerDeactivated () ;

for (PowerState layer: newLayers — activeLayers)
layer.layerActivated () ;

activeLayers = newLayers;

Fig. 7. JCop context class for power state (de)activation. This is no valid Java code.
To improve readability, Java collection handling was substituted by a pseudo-code-like

syntax.

19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

12

layer MediumPowerState implements PowerState {

private boolean isDimmed = false;

private Thread displayTimer = {
sleep (5000) ;
DisplayDevice.setBrightness (0.51);
isDimmed = true;

}s

private void unDim() {
if (isDimmed) {
DisplayDevice.setBrightness (2f);
isDimmed = false;
}
}

/+ same for KeyboardInput.handleKeyStroke (..), ButtonInput.
handle x(..) =*/
before public void TouchInput.handleDisplayTouch(int x, int
v) A
thislayer .unDim() ;
thislayer.displayTimer.stop () ;
thislayer.displayTimer.start () ;

}

public void layerActivated () {
displayTimer.start () ;

}

public void layerDeactivated () {
unDim () ;
displayTimer.stop () ;

}

public void AudioDevice.write (byte[] data, float volume) {
proceed (data, 0.5f * volume);

}

Fig. 8. JCop low power state implementation. This is no valid Java code. Thread
handling was simplified to improve readability.

