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Abstract: Open classes are frequently used in programming languages such as Ruby and Smalltalk to add
or change methods of a class that is defined in the same component or in a different one. They are typically
used for bug fixing, multi-dimensional separation of concerns, or to modularly add new operations to an
existing class. However, they suffer from modularity issues if globally visible: Other components using the
same classes are then affected by their modifications. This work presents Extension Classes, a hierarchical
approach for dynamically scoping such modifications in Ruby, built on top of ideas from Context-oriented
Programming (COP). Our mechanism organizes modifications in classes and allows programmers to define
their scope according to a class nesting hierarchy and based on whether programmers regard an affected class
as a black box or not. Moreover, Extension Classes support modularizing modifications as mixins, such that
they can be reused in other components.
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1. Introduction

Open classes are used for modifying existing classes:

adding or modifying methods in an already existing class

(target class) that is typically defined somewhere else in the

same program or in an external library. The former case is

a method addition and the latter one a method refinement.

There are a variety of use cases for method additions.

The most common use case in mainstream programming

languages such as Ruby is adding auxiliary methods in

an object-oriented way. For example, the Ruby library

ActiveSupport provides methods like Fixnum.minutes and

Fixnum.hours to make it easy to perform time calculations

such as 4.hours + 2.minutes. Another use case is multi-

dimensional separation of concerns [26]: A class or group

of classes may exhibit a number of different concerns which

programmers may want to group together for understand-

ability reasons. While a traditional object-oriented design

allows only for a “single, dominant dimension of separation”,

open classes can be used to group methods of a class family

belonging to the same concern at a dedicated place.

Method refinements are typically used for bug fixing or

implementing behavioral variations. Multiple behavioral

variations can target the same classes and methods. In that

case, there must be a way to specify which variation should

be used and possibly combined. Context-oriented program-
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ming [15] (COP) is a mechanism for modularizing context-

dependent behavioral variations. The mechanism presented

in this paper is similar to context-oriented layer activation,

focusing on scoping modifications dynamically. Other mech-

anisms have been proposed for Ruby and other languages,

and will be addressed in the next section.

1.1 Background

This paper presents the design and implementation of Ex-

tension Classes for layer-based hierarchically-scoped open

classes in the Ruby programming language. Ruby is a class-

based object-oriented programming language and has sup-

port for class nesting and modules (mixins). Our design is

amenable to other dynamically-typed languages supporting

these features (e.g., Python, Scala, certain Smalltalk imple-

mentations [23]).

In Ruby, a class can be either a top-level class or be nested

within another class. Nested classes are static members

like constants (i.e., they are shared by all instances of a

class) and their purpose is typically to serve their enclosing

classes [8]. Mixins are units of code reuse, called modules

in Ruby, and implemented as classes that are inserted into

the (single inheritance) superclass hierarchy. In this imple-

mentation, they are the key to sharing modifications among

multiple classes, but the mechanism itself is not specific to

mixins and could also be implemented with traits [22] or

other composition mechanisms.

1.2 Requirements

Fig. 1 illustrates the problem with open class modifica-

tions in its most basic form (example taken from Method
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Fig. 1 Example: Simplified Problem Description

Shells [25]). We would like to design two applications Viewer

and Browser, which are both using the library WebPage.

That library can render web pages and show popups. In

Scenario (a), Viewer opens a web page and a popup must be

shown. In Scenario (b), the Browser programmer overwrites

the popup method with a no operation. When Browser

opens a web page no popup must be shown. The main

challenge is to ensure that Viewer and Browser can be used

together and still function properly, i.e., Browser’s modifi-

cation to WebPage do not affect Viewer, and Browser works

even if the popup method is called indirectly.

Our goal is to develop an open classes mechanism sup-

porting method additions and method refinements. That

mechanism has the following properties, whose benefits will

be described in more detail in Section 3 and then formally

defined in Section 4. Properties 6–8 account for consistent

language integration in programming languages with mixin-

s/traits, class nesting, and inheritance (such as Ruby).

( 1 ) Only Classes: No additional organizational units

(such as classboxes, method shells, etc.) are necessary.

Modifications are part of other classes or modules.

( 2 ) Locality of Changes: Modifications are visible in a lo-

cal scope (i.e., not global). Components outside of that

scope (e.g., Viewer in Fig. 1) are not affected by them.

( 3 ) Implicit Activation: Modifications are automatically

activated for source code that is defined in the same

class as the modifications (e.g., popup for Browser; re-

flexivity).

( 4 ) Dynamic Scoping: Once activated, modifications re-

main active even if a method in a different class is called.

This allows for indirect method calls (cf. local rebind-

ing). For example, in Fig. 1, no popup must be shown

even if popup is called from open (which is called from

Browser).

( 5 ) No Destructive Changes: Modifications are deacti-

vated if a method is called in a class that is not known

to be compatible with them (limiting the dynamic ex-

tent). Multiple activated modifications targeting the

same method (i.e., overwriting each other) are also po-

tentially destructive.

( 6 ) Reusability: Modifications can be shared among mul-

tiple classes, in all of which they are activated implicitly.

( 7 ) Hierarchical Scoping: Modifications defined in an en-

closing class should also implicitly be activated for inner

(nested) classes.

( 8 ) Inheritance Scoping: Modifications defined in a su-

perclass should also implicitly be activated for sub-

classes.

( 9 ) Composability: Multiple modifications targeting the

same method can be combined, which can also be used

to resolve destructive modifications.

1.3 Outline and Contributions

The remainder of this paper is structured as follows. Sec-

tion 2 will compare Extension Classes to related work. Sec-

tion 3 presents motivating examples and illustrates the re-

quirements. Section 4 describes Extension Classes formally

and Section 5 gives a brief overview of our Ruby implementa-

tion. Finally, Section 7 gives a summary and ideas for future

work. This paper makes the following main contributions.

• An open classes mechanism with local visibility sup-

porting dynamic scoping and scoping according to class

nesting hierarchy and inheritance hierarchy.

• A prototypical implementation in Ruby*1.

2. Related Work

There are a variety of related technqiues and implemen-

tations for open classes (Table 1). Some programming lan-

guages support them out of the box, while others rely on

external libraries. Open classes mechanisms with locality

of changes are mechanisms with a scoping technique, i.e.,

changes are not necessarily globally visible. In that case,

modifications must typically be activated at some point,

which is usually done with imports. Importer granular-

ity and importee granularity denote the unit of scope and

the unit of importable changes. A mechanism supporting

units of fine granularity gives programmers precise control

over what code will be affected by an import or over which

changes should be imported, respectively. If a mechanism is

dynamically scoped, modifications are applied even beyond

(usually static) import statements, i.e., activation contin-

ues beyond method invocations (cf. local rebinding). In

this way, indirectly called methods can be adapted. Some

mechanisms have a way to limit the extent of dynamic scop-

ing, such that modifications do not propagate into arbitrary

program parts. If changes are composable, there must be a

way to access either an original implementation (in case of a

method refinement) or another active modification that tar-

gets the same variation point. Modifications can be instan-

tiable if they are encapsulated in a class-like structure. The

following paragraphs highlight specialties of related tech-

niques and compare them with Extension Classes.

Ruby has open classes, which allows programmers to open

existing classes/modules to add new methods or to override

*1 git@github.com:prg-titech/ruby-extension-classes.git
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Base Language Ruby
St.,
Java

(many) Java Java Ruby Java Py. Scala St.

Method Additions 3 3 3 3 (3) 3 3 3 3 3 3 3

Method Refinements 3 3 3 3 3 7 3 3 7 3 7 3

Variable Additions (3) (3) (3) 3 (3) 3 7 (3) 7 3 (7) 7

Locality of Changes 3 7 3 3 3 3 3 3 3 7 3 7

Importer Granularity
(who is affected?)

class n/a file classbox
block,
object

pkg.
meth.
shell

meth.
shelter

pkg. n/a file n/a

Importee Granularity
(unit of change)

class n/a
refine-
ment

class,
classbox

layer
ex-

pander
meth.
shell

meth.
shelter

meth.,
pkg.

n/a class n/a

Dynamic Scoping 3 n/a 7 3 3 7 3 3 7 n/a 7 n/a
Dynamic Extent
Limit

scope
of class

n/a n/a
scope of
classbox

7 n/a link
hidden

chamber
n/a n/a n/a n/a

Composability 3 (7) 3 3 3 (7) 7 7 (7) 7 n/a 7

Instantiability (7) 7 7 7 (3) 7 7 7 7 7 7 7

Table 1 Comparison of Mechanisms and Implementations for Open Classes

existing methods. It is a common pattern to alias a method

before overwriting it, such that the original implementation

is accessible under a different name [13]. Changes are glob-

ally visible, potentially leading to destructive modifications.

Refinements were introduced in Ruby 2.0 and allow pro-

grammers to limit the scope of open classes. Refinements

can be activated at “top-level” or inside a class, and remain

active for the remainder of the current file. They are not

dynamically scoped: If a method in another file is called,

the refinement is deactivated [28]. There is a discussion in

the Ruby community as to whether refinements should be

dynamically and hierarchically scoped [11]. Reasons against

include implementation issues (performance), complexity of

the lookup semantics, and unintuitive behavior of the using

keyword, which is used to activate refinements [19]. Even

though our approach adds some complexity to the lookup se-

mantics as well, it automates parts of the activation process

and does not require a using equivalent in many cases.

A classbox [6] is a container and namespace (package in

the Java implementation [5]) for classes. Classes can be im-

ported from other classboxes and changed locally; a class-

box is the unit of scoping, whereas modifications are scoped

by classes in our approach. Refining a class conceptually

defines a new class, i.e., changes to imported classes are

visible only in the extending classbox or in classboxes im-

porting extended classes. Similar to our approach, including

a class C from another classbox into a classbox B extends

the scope of B onto C (local rebinding). An application can

be represented by a classbox defining its own classes, im-

porting external classes, and maybe extending them locally.

In Ruby, an application is typically a single top-level class,

whose modifications are visible in all nested classes with our

approach. Classboxes are most similar to our approach, but

lack hierarchical scoping and inheritance scoping, and they

introduce an additional organizational unit for classes and

modifications.

Local rebinding can lead to accidential method over-

writing if two classboxes provide conflicting modifications.

Method Shelters have been proposed as an extension to

Ruby, combining features from Ruby refinements and Class-

boxes [1]. Modifications can be defined in a hidden chamber

or in an exposed chamber. Modifications defined in an ex-

posed chamber are subject to local rebinding, whereas mod-

ifications in a hidden chamber cannot be overridden locally

and behave similar to lexical scoping of Ruby refinements.

Our approach is closer to the Classboxes model and can cur-

rently not handle conflicting modifications as Method Shel-

ters do. However, our approach lets programmers compose

multiple (layered) modifications.

In plain layer-based context-oriented programming

(COP) [15], partial methods can be used to encapsulate

modifications in COP layers. Most COP implementations

have pure dynamic scoping [3], i.e., if a layer is activated

for a block (e.g., using the with: method in ContextS [14]),

then that method remains active until the execution of

the block finished, unless programmers deactivate the layer

explicitly. This can lead to destructive modifications if a

method is called in a class that is not compatible with

the modifications defined in an active layer (e.g., see full

example in Section 3.1), because the extent of dynamic

scoping is not limited. ContextJS allows a form of hierar-

chical scoping, where a layer can be activated for a morph

(user interface element) and all of its submorphs [17]. COP

frameworks with layer instances (e.g., JCop [4]) are the

only mechanisms with instantiablity in this comparison,

but our approach could be extended accordingly.

© 2017 Information Processing Society of Japan
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MultiJava [10] and Expanders [29] support statically-

scoped method additions. The scope of class additions is

confined to the source code file where they were defined,

unless they are imported. MultiJava and Expanders take

into account class additions during type checking at com-

pile time, making it possible to detect and prohibit destruc-

tive modifications. In contrast to our approach, there is

no scoping mechanism extending modifications to collab-

orating classes, because method refinements are forbidden

and method additions can only be referred to in a type-safe

way if they were imported explicitly. MultiJava and Ex-

panders support polymorphic overriding of methods (and

accessing original methods). Overwriting arbitrary meth-

ods, even other method additions, is not allowed.

Method Shells [25] have been proposed as an open classes

mechanism for Java. Classes and revisers (containers for

modifications) are contained in a method shell. Modifica-

tions are visible only within the extending method shell or

when the method shell is imported into another one. Classes

from other method shells can also be imported with the

link keyword, which will not include revisers in the current

method shell and switch the context (active method shell) to

the method shell of the included class when a method from

that class is executing. Our approach cannot link other

classes; however, the scope of a class controls deactivation

of modifications, which is similar to “linking” and sufficient

to implement the examples shown in that paper [25].

Python does not provide language support for open

classes, but exposes the method dictionary of classes. A

method addition or refinement can be defined by adding a

method to that dictionary, but changes to the method dic-

tionary are globally visible [7]. In Squeak/Smalltalk, a pack-

age can define methods for classes in a different package [18].

These methods are called extension methods and installed

when the packaged is loaded. Existing methods are overwrit-

ten, making modifications globally visible. Scala supports

implicit classes [20] which are syntactical sugar for implicit

type conversions [21]. Such a conversion is attempted auto-

matically if a non-existing method is called. Consequently,

implicit classes cannot be used for method refinements.

Previous Work

This work is based on our previous work [23] on class ex-

tensions for the Matriona module system. Matriona is a

module system for Squeak/Smalltalk [24] that brings class

nesting and class parameterization to Smalltalk, inspired by

concepts from Newspeak and BETA. The present work sim-

plifies the previous class extensions mechanism and presents

it in a distilled form, leaving away Matriona-specific details.

In Matriona, the (method) lookup has an additional level

of complexity, because nested classes are virtual and can

be overridden. The semantics of super calls (proceed in

this work) in particular are complex, because superclasses

are also virtual and cannot be determined statically, mak-

ing it hard for programmers to predict/control the scope

of a class at development time. Furthermore, mixins are

effectively represented as methods with a superclass param-

eter and returning a class object, making reusability of class

extensions harder to grasp for programmers that are not fa-

miliar with mixin theory. In contrast, Ruby nested classes

and superclasses are not virtual and there is a dedicated

language construct for mixins (modules).

3. Extension Classes by Example

In this section, we present three examples to justify the

requirements and give an overview of the Extension Classes

mechanism that we will formally define afterwards.

3.1 Dynamic Scoping

The first example [25] was already briefly mentioned in

Section 1.2 and illustrates the most basic use case. We

would like to develop an embedded web browser and an au-

dited viewer for web pages, represented by classes Browser

and Viewer, respectively. Both applications use the same

WebPage library, containing functionality for rendering web-

sites and for showing popups (Fig. 2).

1 class WebPage

2 def open(url)

3 if popup_requested

4 popup(text)

5 end

6 end

7

8 def popup(text); """Show popup dialog"""; end

9 end

Fig. 2 Definition of Class WebPage. Method popup may be called
internally to display a popup window.

Since the browser application was designed for an embed-

ded system, it should not display popup windows, whereas

the audited viewer application should show a popup window

whenever a confidential file is accessed (Fig. 5). Showing

popup windows is an essential part of the functionality of

the audited viewer application.

In this design, the embedded web browser defines a

method refinement for WebPage.popup to disable popup

windows, i.e., replacing it by a no operation (Fig. 4). Our

mechanism should allow for the following behavior.

First, when another application uses both the embedded

web browser and the audited viewer, the viewer should still

show popup windows. In other words, the scope of the

browser’s modifications should be confined to Browser.

Second, in another design, where the embedded web

browser uses the audited viewer, programmers should be

able to choose whether the browser’s modifications should

affect the audited viewer or not. In other words, program-

mers should be able to specify whether the scope of the

browser’s modifications includes Viewer or not.

Representation of Modifications and Notation

In our Ruby implementation, class modifications are de-

fined as members of classes*2. Following COP terms and

*2 They can also be defined as members of modules (mixins).
Whenever we say class, we also refer to modules.

© 2017 Information Processing Society of Japan
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1 class Viewer

2 def check(file)

3 page = WebPage.new

4 if file.is_confidential?

5 page.popup("<b>confidential</b>" )

6 end

7 end

8 end

Fig. 3 Definition of Class Viewer. This class uses WebPage inter-
nally and might trigger a window to pop up.

Object

WebPage Browser

popup

Viewer

popup

checkWebPage

open

Application

main

open

{Object (, WebPage, Browser, Viewer, Application)}

{WebPage} {Browser, WebPage} {Viewer} {Application}

do nothing

Fig. 4 Example: Locality of Changes. Gray boxes indicate
classes and their extensions, sets enclosed in curly braces
indicate the scope of a class. Classes enclosed in paren-
theses account for hierarchical scoping.

1 class Browser

2 def open(url)

3 WebPage.new.open(url)

4 end

5

6 partial

7

8 class ::WebPage

9 def popup(text); """Do nothing"""; end

10 end

11 end

Fig. 5 Definition of Class Browser. The class defines a partial
class targeting the top-level class WebPage, overwriting
method popup.

notation, we call both method additions and method refine-

ments partial methods. Partial methods must be wrapped in

partial classes, which are defined like nested classes, but re-

quire a preceeding partial statement*3 and must reference

an existing class, which is called target class. The target

class is the class that is being extended.

For example, in Fig. 5, Browser is a class defining a partial

class targeting the class WebPage and containing a partial

method popup. Partial methods can be instance methods

or class methods; however, we focus on instance methods in

the remainder of this work.

Scope of Modifications

To avoid destructive modifications, there are rules to

activate and deactivate modifications. (De)activation is

supported on a per-class basis, i.e., it is not possible to

(de)activate single partial methods or partial classes sep-

arately. The term (de)activation of class C means that all

method additions and method refinements defined in a class

C (not targeting class C!) are (de)activated. The rule for

class activation is simple: A class C is activated if one of

*3 This statement works similar to public, private, and
protected.

C’s methods is executed. For example, if Browser.open is

executed (invoked), class Browser is activated.

Class deactivation depends on the scope of a class and

takes place upon method invocation. The scope of a class

is a set of classes and determines how long a class should

remain activated if activated before, i.e., the scope of a class

affects only deactivation but not activation: If a class C is

active and the control flow dispatches to a method D.foo,

where D 6∈ scope(C), then class C is deactivated. The

scope of a class always contains the class itself (reflexivity).

Therefore, when calling WebPage.popup from Browser, the

method lookup will select the method refinement defined in

Browser, because Browser remains active.

Furthermore, the scope of a class also contains the tar-

get classes of all partial classes. For example, WebPage ∈
scope(Browser). If WebPage.open calls popup, the method

lookup will use the method refinement if open was called

from Browser, because WebPage ∈ scope(Browser). This is

also known as local rebinding [6] or dynamic scoping.

scope(Browser) = {Browser} ∪ {WebPage}

Every method invocation can activate and deactivate

classes. Our implementation maintains a class activation

set containing all activated classes. When a method call

returns, the set of activated classes is restored to the origi-

nal state right before that method call. Partial classes give

programmers control over the scope of a class and thus its

deactivation. Adding another class D to the scope is sim-

ple: Define a partial class targeting D. It does not have to

contain any partial methods.

Until now, method dispatch is simple: Before invoking a

method C.foo, first check if a class in the class activation set

has a partial method for C.foo and use that method instead.

If not, use method C.foo. In order to support all require-

ments stated in the previous section, the following sections

will refine the method dispatch mechanism, the data struc-

ture used for storing activated classes, the definition of the

scope of a class, and the rule for activating classes.

Full Example

In the following examples, the embedded browser and the

audited viewer are used together, in order to illustrate de-

activation of modifications (classes). Class Application

(Fig. 6) is a component that uses both Browser and

Viewer. When invoking method run, there are no classes

activated other than Application. The browser applica-

tion will not generate popup windows, whereas the au-

dited viewer application will, because Browser is deacti-

vated when Browser.open returns to Application.main.

The reason for that is that the original class activation set

is restored when method open returns.

Consider a slightly different case now where Browser uses

Viewer internally, while both of them still use WebPage for

rendering purposes (Fig. 7). If Browser calls WebPage di-

rectly, no popups will be shown. However, once Browser

calls a method in Viewer, class Browser is deactivated, be-

© 2017 Information Processing Society of Japan
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1 class Application

2 def main

3 Browser.new.open("http://..." )

4 Viewer.new.check("secret.html" )

5 end

6 end

Fig. 6 Definition of Class Application. This class contains the
entry point in a scenario where both Browser and Viewer

are used together.

1 class Application

2 def main

3 Browser.new.open("http://..." )

4 end

5 end

6

7 class Browser

8 def open(url)

9 WebPage.new.open(url)

10 Viewer.new.check("secret.html" )

11 end

12

13 # Same partial classes as in example above

14 end

Fig. 7 Variation of Application Scenario. Browser overwrites
popup and uses Viewer internally.

Application Browser Viewer

WebPage

{Application}

[Application]

{Browser, WebPage}

[Browser]

− Application
+ WebPage

− Browser
+ Viewer

{Viewer}

[Viewer]

a) [Browser, 
    WebPage]

{WebPage}
b) [WebPage]

a) + WebPage b) − Viewer
    + WebPage 

Fig. 8 Example: Browser uses Viewer. Sets enclosed in curly
braces indicate the scope of a class (see Fig. 4). Sets
enclosed in square brackets indicate class activation sets
after calling a method (specific to this scenario). Arrow
annotations indicate add/remove operations to the class
activation set.

cause Viewer 6∈ scope(Browser). Viewer still shows popup

windows (Fig. 8).

It is unclear what the anticipated behavior of Viewer is in

this case: Should it show a popup window or not? That deci-

sion is left to the programmers. They could apply Browser’s

modifications to Viewer by adding a (potentially empty)

partial class targeting Viewer to Browser.

3.2 Hierarchical Scoping

In this section, we extend Extension Classes to handle

nested classes. Consider a networking library that consists

of a module Networking where functionality such as sock-

ets and DNS name resolution is organized in a class nest-

ing structure within Networking (Fig. 9). Network end-

points are represented by instances of class Address, which

is nested inside Networking. In this design, the network-

ing library defines a method addition String.to address to

make it easy to convert string representations of DNS names

and IP addresses to instances of Networking.Address

(Fig. 10).

The open classes mechanism should ensure that the

method addition String.to address is visible in the en-

tire networking library, i.e., also inside the nested module

1 module Networking

2 class Address; end

3

4 module Pinging

5 def self.ping(address)

6 # address might be a String

7 addr = address.to_address

8 # ...

9 end

10 end

11

12 partial

13

14 class ::String

15 def to_address

16 # Convert String to Address

17 end

18 end

19 end

Fig. 9 Definition of Module Networking. Behavioral variations
and additions defined for String should be visible in all
nested classes/modules of Networking.

Object

AddressBook Networking

Address

String

String

{Object, AddressBook, AddressBook.Address, Networking, Networking.Address, String}

{AddressBook, Address, String} {String}

to_address

to_address

Address

String

{Networking, Address, String}

to_address

to_address

{Address} {Address}

Pinging

ping
{Pinging}

Fig. 10 Example: Duplicate Auxiliary Methods. Method re-
finements for String.to address are only active in their
respective owner classes and their nested classes.

Pinging. In other words, the scope of Networking should

contain all nested classes of Networking. Moreover, in ac-

cordance with the mechanism described in the previous sec-

tion, its modifications should not be visible in other appli-

cations. For example, consider that an address book appli-

cation contains a class Address representing mail addresses

along with a converter method String.to address. The

scope of each class should be confined to itself and its nested

classes, but not spill over to other classes in different parts

of the class nesting tree.

Scope of Modifications

We extend the notion of the scope of a class such that it

also includes the scope of all nested classes of the class. Fur-

thermore, we activate a class not only if one of its methods is

executing, but also if a method contained in one of its nested

classes is executing. For example, when calling a method in

Pinging, the classes Pinging, Networking, and Object are

activated. The module Networking remains active even in-

side Pinging, because Pinging ∈ scope(Networking). Con-

sequently, Pinging uses the to address method addition

defined as part of Networking.
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scope(Networking) = {Networking, String}

∪ scope(Networking.Addr.)

∪ scope(Pinging)

= {Networking, Networking.Addr.,

String, Pinging}

Moreover, according to the rule described in the pre-

vious section, both classes AddressBook and Networking

can define class additions String.to address and work

side by side, because modifications defined in AddressBook

are not active in Networking and modifications defined in

Networking are not active in AddressBook. The reason

for that is that Networking 6∈ scope(AddressBook) and

AddressBook 6∈ scope(Networking).

3.3 Importing Extension Classes

In this section, we extend Extension Classes to allow for

importing. Consider a libary representing abstract syn-

tax trees (AST) that defines a tree-based data structure of

nodes, along with a number of operations (e.g., printing and

various evaluation strategies). Every operation provides a

method per node and optionally additional helper methods.

In this design, every operation is represented as a set of

method additions for AST node classes. Notice how the

concerns evaluating and printing are grouped in their own

separate classes (Fig. 11, 12). In terms of multi-dimensional

separation of concerns, the AST node type is the dominant

decomposition dimension and the other two concerns are

encapsulated in an additional dimension for operations.

Object

AST

Nodes

  < Node

Evaluating

Node

IntNode

PlusNode

Printing

Application

   < Node

IntNode

PlusNode

evaluate

evaluate

Node

IntNode

PlusNode

print

print

(module) (module)

include AST::Evaluating
include AST::Printing

Node

{Object, AST, Nodes, Node, IntNode, PlusNode, Application}

{AST, Nodes, Node, IntNode, PlusNode}

{Nodes, Node, IntNode,
                       PlusNode}

{Node}

{IntNode
 (, Node)}

{PlusNode
 (, Node)}

{Evaluating, Node, IntNode,
                       PlusNode
                       (+ super)}

{Printing, Node, IntNode,
                       PlusNode
                       (+ super)}

{Application (, Evaluating, Node,
IntNode, PlusNode, Printing)}

Fig. 11 Example: AST Library. Classes enclosed in parentheses
in scope sets account for inheritance scoping.

The open classes mechanism should allow programmers to

choose an evaluation strategy for their application, or possi-

bly combine multiple strategies. For example, Evaluating

is the default evaluation strategy, but programmers might

want to use Mod10Evaluating which is built on top of the

default evaluation strategy and takes the result modulo 10.

In other words, programmers should be able to import mod-

ifications into their applications.

Modularizing Modifications with Mixins

According to the previously mentioned class activation

rule, an evalution strategy like Evaluating is activated only

1 module AST

2 module Nodes

3 class Node; end

4 class IntNode < Node; end

5 class PlusNode < Node; end

6 end

7

8 module Evaluating

9 partial

10

11 class Nodes::IntNode

12 def evaluate

13 return value

14 end

15 end

16

17 class Nodes::PlusNode

18 def evaluate

19 return left.evaluate + right.evaluate

20 end

21 end

22 end

23

24 module Printing

25 # Implementation omitted

26 end

27 end

Fig. 12 Definition of Module AST. Functionality for printing and
evaluating trees is encapsulated in modules Printing

and Evaluating, which provide method additions for all
AST node classes.

1 class Application

2 include AST::Printing

3 include AST::Evaluating

4

5 def main

6 AST::Nodes::IntNode.new(42).evaluate

7 end

8 end

Fig. 13 Definition of Class Application. To use the tree printer
or evaluator, the respective module has to be included.

if a method in Evaluating is called. In this example, all op-

erations are defined within Ruby modules which can be in-

cluded in (multiple) classes. Ruby modules are implemented

as mixins [9] and effectively insert a copy of the module in

the superclass hierarchy upon inclusion (application). From

a technical point of view, it does not matter if a partial

method was defined in a superclass or was included from a

module, which is why this example is listed under inheri-

tance scoping.

In the example in Fig. 13, Printing and Evaluating are

included in class Application, which activates both mod-

ules (first Printing, then Evaluating) when running code

from Application (or a nested class or a subclass). Simi-

larly to standard Ruby, the ordering of include statements

is important if two modules provide partial methods with

the same name for the same target class (see Layered Mod-

ifications).

Scope of Modifications

We extend the notion of the scope of a class such that

it also includes all classes contained in the scope of its su-

perclass*4. For example, Application’s superclass is an

*4 Class Object is an exception. Since Object is the root of the
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application of mixin Evaluating, whose scope includes all

AST node classes (for presentation purposes, the following

formulas do not account for Printing).

scope(Evaluating()) = {Evaluating(),

Node, IntNode, PlusNode}

scope(App.) = scope(Evaluating()) ∪ {Application}

= {Application, Evaluating(),

Node, IntNode, PlusNode}

The only class being activated is Application but not its

superclass. However, the method lookup does not only take

into account partial classes defined in an activated class L,

but also partial classes defined in its superclass L′, starting

with L and then L′ (see Section 4.4). The proceed expres-

sion*5 can be used in a partial method of L to call a partial

method defined in L′ or one of its superclasses (similar to

proceed in COP and super).

Consequently, when executing a method in Application,

modifications from Evaluating are active and remain active

as long as methods from Application or any AST node class

are executed.

Layered Modifications

We now want to modify our AST evaluator in such a way

that all results and partial results are calculated modulo

10. For that reason, we define a set of class extensions

Mod10Evaluating that runs on top of Evaluating, i.e.,

whenever the mixin Mod10Evaluating is applied, the mixin

Evaluating is applied first, automatically (Fig. 14, Design

Include). Technically, Mod10Evaluating is a module that

first includes module Evaluating before defining its own

partial methods; standard Ruby allows include statements

inside modules, i.e., this is not a new language feature.

1 module AST

2 module Mod10Evaluating

3 include Evaluating

4

5 partial

6

7 class Nodes::IntNode

8 def evaluate

9 return proceed % 10

10 end

11 end

12

13 class Nodes::PlusNode

14 def evaluate

15 return proceed % 10

16 end

17 end

18 end

19 end

Fig. 14 Definition of Mod10Evaluating. This evaluator builds on
top of Evaluating by including it internally.

class nesting hierarchy and the inheritance hierarchy in Ruby,
we do not include scope(Object) in subclasses. In that case all
classes would be included.

*5 super is a better name but cannot be overloaded in Ruby.

From now on, we use a stack (instead of a set) as the data

structure for maintaining activated classes. Consequently,

we call that data structure the class activation stack, in

adherence to the layer activation stack in context-oriented

programming. A stack can capture the ordering of class ac-

tivations, such that proceed can also be used to dispatch

to a method in the next activated class after an exhaustive

search in the previous class (the class on top of the next

activated class in the class activation stack), similarly to

method dispatch in context-oriented programming.

To continue with the previous example, note that a mixin

application of Mod10Evaluating contains partial methods

for IntNode.evaluate and PlusNode.evaluate. Since

mixin Evaluating is applied first (during mixin applica-

tion of Mod10Evaluating) and mixin Mod10Evaluating is

applied second, method execution will start with methods

from the latter one. The reason is that an application of

Mod10Evaluating is on the top of the class activation stack.

The proceed expression in the evaluate methods executes

the evaluate implementations defined in Evaluating.

In theory, Mod10Evaluating could also be defined as a

subclass of Evaluating (Design Subclass), resulting in the

same behavior in this example (see Section 4.4). This is pos-

sible because proceed calls are used for both calling a super

method (i.e., method defined in a superclass) and calling the

next partial method encapsulated in a partial class on the

class activation stack. However, due to language restrictions

in Ruby, modules cannot be subclassed and classes cannot

not be included, confining such a design to activation by

local rebinding (see Section 4.5); i.e., behavioral variations

cannot be shared with mixins.

4. Formal Concept

Extension Classes use a variant of context-oriented pro-

gramming [15] (COP) to support open classes. Every class

can not only contain variables, methods, and nested classes,

but also partial classes, i.e., every class with its partial

classes can act as a layer. Conceptually, a partial class is

a special form of a nested class which does not define a new

class via subclassing but extends a specific existing target

class. Every partial class can contain a number of partial

methods. Such a method can be a method addition or a

method refinement.

4.1 Rationale

Method additions and method refinements can be ben-

eficial for their defining classes, but they can break other

classes or libraries if they are global. Programmers typi-

cally treat external libraries as black boxes [25], i.e., it is

hard to anticipate the effect of modifications. Therefore,

Extension Classes should allow programmers to define the

scope of modifications, i.e., where they are active. As a rule

of thumb, we propose that a class L with its modifications

should be deactivated if the control flow is passed to an-

other class or library that the programmer of L regards as

a black box. Defining a partial class (container for modifi-
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cations) for a target class C within class L means that C is

no longer regarded as a black box from L’s point of view.

Class nesting can be used as an orthogonal scoping mecha-

nism to indicate that modifications defined in a class should

also be active for all of its nested classes. If a class defines

modifications for C, then C is not being regarded as a black

box from the perspective of any nested class (i.e., nested

classes are aware of the behavior and modifications of their

enclosing classes).

4.2 Class Activation

Our Ruby implementation maintains a global stack of ac-

tivated classes (class activation stack), which is similar to

a layer activation stack in context-oriented programming.

Modifications defined as part of a class L are taken into

account during method lookup only if L is on the class ac-

tivation stack. The exact lookup semantics are described

in Section 4.4. Classes are activated and deactivated before

performing a method call (but after performing the method

lookup) and when a method call returns according to the

following activation rule.

Activation Rule. Before dispatching to a method

C.method, make a copy S′ of the current class activation

stack and perform the following operations.

( 1 ) For all active classes L on the class activation stack,

if C 6∈ scope(L), deactivate (remove) L.

( 2 ) Push C and its enclosing classes onto the layer

(class) composition stack (start with outermost class).

Once the method call returned, restore the original class

activation stack S′.

Note that classes are never activated multiple times. If

an already activated class is activated once more, it will be

moved to the top of the activation stack.

According to the activation rule, enclosing classes are ac-

tivated but not superclasses. They are accounted for in the

method lookup (Section 4.4). It is debatable whether en-

closing classes of superclasses should be activated or not –

our approach does not activate them, because it makes the

method lookup significantly more complex and difficult to

predict. It is also closer to Ruby semantics, which does not

take into account names defined in the superclass’s enclosing

class during constant lookup.

4.3 Scope of a Class

The scope of a class determines if a class remains activated

during a method call. It does not affect method activation.

A class remains active only as long as the control flow stays

within the class’s scope, as specified by the activation rule.

Definition. The scope of a class L is defined as the set

containing L, all target classes (and their reachable nested

classes*6) corresponding to partial classes of L, all classes

*6 nested∗(C) = {C} ∪ {D |D ∈ nested∗(N) ∧ N ∈ nested(C)},
i.e., C and all nested classes of C and their nested classes etc.

in the scope of all nested classes of L*7, and all classes in

the scope of the superclass of L (if super(L) 6= Object).

scope(L) = {L} (reflexivity)

∪{C |C ∈ nested∗(target(P )) ∧ P ∈ partials(L)}
(dyn. scoping / local rebinding (+ hierarch. scoping))

∪{C |C ∈ scope(N) ∧N ∈ nested(L)}
(hierarchical scoping)

∪ scope(superclass(L)) (inheritance scoping)

In this definition, reflexivity accounts for direct method

calls. Dynamic scoping/local rebinding accounts for indi-

rect method calls. In the absence of hierarchical scoping,

the second line could be simplified as follows.

∪{target(P ) |P ∈ partials(L)}
(dynamic scoping / local rebinding)

Dynamic scoping is not transitive: The scope of a class

includes all target classes, but not the scope of all target

classes. This is an intentional decision as programmers writ-

ing modifications for a class C would otherwise have to be

aware of all modifications of C itself.

Note that modifications remain active even if the control

flow changes from one target class A to another one B. The

rationale is that programmers do not regard A and B as

black boxes, since they are changing both of their behav-

ior. Consequently, programmers should also be aware of the

interaction between A and B.

It is interesting to see that the activation rule cannot be

replicated using an inversed scope function without chang-

ing its semantics. One reason for that is that the scope of

every class is a static property, whereas class activation is

dynamic.

4.4 Method Lookup

Whenever a method is called on an object, our approach

first determines the receiver’s class C. Instead of using C’s

superclass hierarchy for the method lookup, its effective su-

perclass hierarchy is used, which is a combination of C’s

superclass hierarchy and partial classes for C and its super-

classes defined as part of classes on the layer composition

stack.

Effective Superclass Hierarchy

Extension Classes use the proceed expression for both

calling overridden methods defined higher in the superclass

hierarchy and for calling partial methods defined in a class

lower on the class activation stack. From a method lookup

point of view, the actual superclass hierarchy and partial

classes defined in classes on the class activation stack are

combined into an effective superclass hierarchy. The rule

for merging both hierarchies is simple: For every class C

in the actual superclass hierarchy, first look up methods in

partial classes of C on the layer composition stack, then

*7 Therefore, nested∗(L) ⊆ scope(L).
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AA'BB'

<<partial>>
C'

<<partial>>
C'

<<partial>>
C'

<<partial>>
C

C' C

<<nested>><<nested>><<nested>><<nested>>

Fig. 15 Example: Effective Superclass Hierarchy. The class composition stack is 〈B’, A’〉.

look up methods in C. Partial classes are conceptually sub-

classes which are applied dynamically depending on the cur-

rent class composition.

Definition. The effective superclass hierarchy of a class

C is defined as Effective(C), where S is the class compo-

sition stack (S[1] is top of stack), #C is the number of

superclasses of a class C, super i(C) is the i-th superclass

of class C, L[C] is the partial class targeting C defined in

L (if there is one), 〈〉 brackets denote a (ordered) list, and

summation is used for list concatenation.

LayerHier(L,C) =

#L∑
i=0

〈super i(L)[C]〉

ClassLayers(C) =
( |S|∑

i=1

LayerHier(S[i], C)
)

+ 〈C〉

Effective(C) =

#C∑
i=0

ClassLayers(super i(C))

LayerHier(L,C) is the list of partial classes for class C

defined in class L and its superclasses. ClassLayers(C) is

the list of partial classes of C (among all activated classes)

and C itself.

Fig. 15 illustrates the effective superclass hierarchy in an

example. Let us assume that the layer composition stack

contains classes A’ and B’ (which is on top). Classes A’, B,

and B’ have partial classes for C’ and class A has a partial

class for its superclass C. Consequently, the effective super-

class hierarchy of C is defined as follows.

LayerHier(B′, C′) =〈B′.C′, B.C′〉

LayerHier(A′, C′) =〈A′.C′〉

LayerHier(A,C) =〈A.C〉

ClassLayers(C′) = 〈B′.C′, B.C′, A′.C′, C′〉

ClassLayers(C) = 〈A.C,C〉

Effective(C) = 〈B′.C′, B.C′, A′.C′, C′, A.C,C〉

As another example, Fig. 16 shows the effective super-

class hierarchy for class IntNode in the scenario from

Fig. 13. If the mixin Mod10Evaluating is applied instead

of Evaluating, that hierarchy is prepended with the cor-

responding partial class for IntNode defined in module

Mod10Evaluating (Design Include). The resulting hier-

archy is identical to the hierarchy in an alternative De-

sign Subclass where Mod10Evaluating is a subclass of

IntNode

+print()

<<partial>>
IntNode

+eval()

<<partial>>
IntNode

ObjectPrinting()Evaluating()Application

<<nested>><<nested>>

Fig. 16 Example: Effective Superclass Hierarchy for IntNode

Evaluating: In both designs, the effective superclass hi-

erarchy of IntNode is defined as follows.

Effective(IntNode) = ClassLayers(IntNode)

+ ClassLayers(Node)

+ ClassLayers(Object)

In Design Include, ClassLayers(IntNode) expands to three

summation terms*8 and ultimately results in the superclass

hierarchy described above.

ClassLayers(IntNode) = LayerHier(Mod10Ev, IntNode)

+ LayerHier(Eval, IntNode)

+ LayerHier(Print, IntNode)

+ 〈IntNode〉

= 〈Mod10Ev.IntNode, Eval.IntNode,

Print.IntNode, IntNode〉

In Design Subclass, LayerHier(Mod10Ev, IntNode) ex-

pands to both Mod10Ev.IntNode and Eval.IntNode, and

ultimately results in the same superclass hierarchy.

ClassLayers(IntNode) = LayerHier(Mod10Ev, IntNode)

+ LayerHier(Print, IntNode)

+ 〈IntNode〉

= 〈Mod10Ev.IntNode, Eval.IntNode,

Print.IntNode, IntNode〉

4.5 Class Activation

If modifications defined in class L should be active when

executing a method defined in class A, one of the following

two designs can be applied.

Activation by Local Rebinding

In this design, programmers have to ensure that the con-

trol flow reaches A via a sequence of methods defined in

classes L → C1 → . . . → Cn → A with Ci ∈ scope(L)

*8 For presentation reasons, we abbreviate Evaluating with Eval

and Printing with Print.
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(for all i = 1 . . . n) and A ∈ scope(L). The control flow

may also originate from a subclass of L or a nested class

of L. Programmers can enforce that a class Ci ∈ scope(L)

by adding a partial class targeting Ci to L (partial classes

can be empty). For example, in Section 3.1, n = 1,

L = Browser, C1 = WebPage, and A = WebPage when call-

ing WebPage.popup via WebPage.open from Browser.open.

Mixin-based Activation

The previous design is hard to accomplish if modifications

should be shared among a variety of classes. The following

design encapsulates modifications in mixins. A mixin is an

abstract subclass that can be applied to a number of super-

classes. When partial classes are defined inside a mixin M

that is applied to a superclass C, all of M ’s modifications

are active when the control flow passes through a method in

the context of the resulting class C′ (i.e., the polymorphic

receiver class is C′).

Consider Fig. 16 as an example. Evaluating() and

Printing() are mixin applications with partial classes for

IntNode. Class Application is defined as a subclass of the

application of both mixins. When a method is executed in

the context of Application, then that class is pushed onto

the composition stack. The effective superclass hierarchy of

class IntNode contains the partial classes of both mixins.

5. Implementation

This section gives an overview of our prototypical Ruby

implementation of Extension Classes. Currently, perfor-

mance is explicitly not a goal. Instead, our prototype is

geared towards language design experiments. It is imple-

mented using metaprogramming, reflection, and Ruby li-

braries providing access to low-level interpreter functional-

ity. Thus, our implementation supports only MRI (Ruby’s

reference implementation) at this time.

Defining Partial Methods

Partial methods must be defined inside partial classes with

a preceeding partial statement. partial is an instance

method defined on Module, similar to public, private,

protected, and tells our implementation that the follow-

ing method definitions are partial methods. Partial classes

reuse the syntax of open classes: In Ruby, any class can be

opened even if that code is nested inside another class, as

long the fully qualified name of the class is used*9. Newly

defined methods are aliased and replaced with a wrapper

method that performs our customized method lookup. To

determine if a method is a partial method, our implementa-

tion uses a Ruby library (implementing the Debug Inspector

API as a C extension) to see if the previous stack frame be-

longs to a method whose class has the partial flag set.

Layer Activation and Method Dispatch

Wrapper methods are responsible for activating and de-

activating classes, as well as for dispatching to the correct

partial method or base method by scanning the class com-

*9 For that reason, we have to write ::WebPage or
Object::WebPage instead of just WebPage in Section 3.1.

position stack. Our implementation defines a new instance

method proceed on class Object which determines the next

partial or base method to be executed. This method uses

our customized method lookup.

Method lookup must be performed in wrapper methods

and in the implementation of proceed. Our implementa-

tion attaches a state object to every wrapper method in-

vocation (stack frame). proceed traverses the stack and

searches for the closest state object. That object stores in-

formation about the method lookup and contains all infor-

mation necessary to find the next method to be invoked:

the (runtime) class of the receiver, the current subclass of

the receiver in the method lookup, the (runtime) class of

the current layer, the current subclass of the current layer

in the method lookup. Effectively, iterating from one state

to the next state traverses the effective superclass hierar-

chy. For the moment, we assume that the class composition

stack remains constant during proceed calls, which is why

we can easily determine the next layer from the layer that

is currently being processed in the method lookup.

Performance Considerations

Our implementation effectively rewrites the method

lookup in Ruby. This is sufficient for experiments, but unac-

ceptable for production code because of performance issues.

A more mature implementation has to either be optimized to

work well with a JIT compiler to automatically remove this

overhead or be implemented in the interpreter and contain

additional optimizations such as class composition caching

and (partial) method inlining.

6. Discussion

The motivation for supporting open classes in a program-

ming language is twofold: First, method additions can pro-

mote modular understandability through multi-dimensional

separation of concerns. Second, method additions and re-

finements provide an easy way to implement behavioral vari-

ations and to add new operations to an existing class. At

the same time, modifications should be confined to a local

scope (e.g., the scope of a certain component) to avoid the

problem of destructive modifications.

Multi-dimensional Separation of Concerns

Multi-dimensional separation of concerns is a concept for

factoring out otherwise scattered concerns in a family of

classes, which can result in improved comprehension, re-

duction of complexitity and better code reuse, among other

benefits [27]. Two well-known techniques to achieve this are

hypermodules [26] in Hyper/J and inter-type declarations

in AspectJ [16]. The basic idea is to define a set of classes

according to one “dominant” dimension and to “encapsulate

concerns in dimensions other than the dominant one” [27].

Method additions are another technique to achieve multi-

dimensional separation of concerns and discussed in this pa-

per. Consider, for example, an AST library where each node

implements methods for the two concerns of evaluating and

printing. A class Evaluating can define method additions
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for all nodes, consisting of only the evaluate methods and

their helper methods. The concern of printing can be imple-

mented in a similar way. In Hyper/J or AspectJ terms, such

a class defining method additions is similar to a hyperslice

or aspect, respectively.

New Operations and Behavioral Variations

Adding new methods to an existing class is difficult with-

out method additions. One approach is to create a subclass

and perform changes in the subclass, but this approach fails

if the programmer is not in control of instance creation.

Another approach for tree-based data structures is to use

the Visitor design pattern [12], but this approach results in

more overhead and infrastructural complexity due to addi-

tonal classes and double dispatch. A common approach in

Ruby are open classes: New methods can be added to an

existing class at any time, but the method addition can be

destructive, i.e., it can overwrite existing methods*10.

It is sometimes necessary to change the behavior of an

existing method in order to extend the functionality of the

method or to simply replace it with one that behaves dif-

ferently. This is necessary, if the developer of that class did

not anticipate the change and provide a suitable interface.

A common use case in Ruby is bugfixing: If a method is

buggy, a method refinement can replace that method with a

proper implementation. Open classes in Ruby can be used

to replace buggy methods (known as monkey patching), but

the method refinement will be globally visible and can be de-

structive. For example, a different component in the system

might depend on the buggy behavior and work around it by

itself. As illustrated by the examples in Section 3, Extension

Classes can handle all of these cases properly.

7. Summary and Future Work

We proposed Extension Classes, a hierarchical and layer-

based approach for organizing method additions and method

refinements in Ruby, as an alternative to open classes. This

approach is similar to context-oriented programming, but

class (layer) (de)activation is performed implicitly. A class

in our system may contain partial methods that extend

(modify) other classes (thus the name Extension Classes)

and can be compared to a classbox or a method shell,

but it is scoped hierarchically and does not require addi-

tional syntactical elements except for the definition of par-

tial classes. Scoping and locality of changes are important

to avoid destructive modifications. Our approach lets pro-

grammers control the scope of modifications by specifying

whether a class should be regarded as a black box or not.

We also showed how our mechanism can be used for multi-

dimensional separation of concerns: Every concern is encap-

sulated in a mixin and can be activated during class defini-

tion. The method lookup is guided by the conceptual model

of an effective superclass hierarchy.

*10 Ruby refinements have other limitations and were discussed in
Section 2.

Future work might focus on a more formal definition of

the semantics of the lookup mechanism and consider per-

formance optimizations. Our current implementation ap-

proach is based on a reimplementation of the method lookup

using metaprogramming. Two particular problems are im-

plicit class (de)activation, which takes place not only when a

method is executed but also when the method returns, and

proceed calls: Both are expensive in our implementation,

but performance is explicitly not a goal at this time. Future

versions might contain optimizations like partial method in-

lining or layer (class) composition caching to achieve better

performance.

This work focuses on dynamically-typed programming

languages, but the main ideas could be applied to statically-

typed languages if the type system is aware of method ad-

ditions and method refinements. One particular problem is

that method additions can only be referred to in a type-safe

way if the type system can prove that at least one class pro-

viding a suitable method is always available at runtime [2].

Future work might evaluate such an approach in the context

of Extension Classes.
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