
dart2java: Running Dart in Java-based Environments
Matthias Springer

Tokyo Institute of Technology
matthias.springer@acm.org

Andrew Krieger
University of California, Los Angeles

akrieger@math.ucla.edu

Stanislav Manilov
University of Edinburgh
s.z.manilov@sms.ed.ac.uk

Hidehiko Masuhara
Tokyo Institute of Technology

masuhara@acm.org

Abstract
We present the design and implementation of dart2java, an
experimental Dart to Java compiler. It is implemented in Dart
and currently supports many but not all Dart language con-
structs. dart2java is a playground to evaluate performance
implications of running Dart code on the JVM and to inves-
tigate if it is possible to write Dart code in a largely Java-
dominated environment.
This paper describes the architecture of dart2java, per-

formance optimizations such as non-nullability of primitive
types and generic specialization (and their implications), as
well as ideas for language interoperability, i.e., calling Java
code from Dart and vice versa.

Keywords Dart, Java, compiler, source code generation
ACM Reference format:
Matthias Springer, Andrew Krieger, Stanislav Manilov, and Hide-
hiko Masuhara. 2017. dart2java: Running Dart in Java-based Envi-
ronments. In Proceedings of ICOOOLPS’17, Barcelona , Spain, June
19, 2017, 6 pages.
https://doi.org/10.1145/3098572.3098575

1 Introduction
Dart is an object-oriented, class-based programming lan-
guage and was originally designed as a replacement for
JavaScript as the scripting language of the web. Nowadays,
Dart can be used for standalone applications running in the
Dart VM and for web applications with Google’s source-to-
source compiler to JavaScript (DDC). This paper presents the
design and implementation of dart2java, an experimental
Dart to Java compiler, whose design is inspired by DDC.

Dart’s syntax is similar to Java but it provides special no-
tations for commonly used features such as list/map literals,
getter/setter methods, or factory constructors. Therefore,
we think that Dart is an interesting alternative for Java pro-
grammers. The motivation for dart2java is threefold: First,

ICOOOLPS’17, June 19, 2017, Barcelona , Spain
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in
Proceedings of ICOOOLPS’17, June 19, 2017 , https://doi.org/10.1145/3098572.
3098575.

Dart
Source Code

Typed Kernel
AST

Java
AST

Java
Source Code

Java
Class Files

Analyzer,
Kernel Loader dart2java dart2java javac

Dart
Class

Java
Class

class + interface for
 generic specializations

Figure 1. Dart Code Compilation Process

dart2java can provide a migration path from a mostly Java-
dominated environment to a Dart environment, if Java code
can be called from Dart (and vice versa). Second, dart2java
is an experiment to see if Dart code is suitable for execution
on the JVM. Finally, dart2java allows programmers to write
Dart code for platforms where only a Java VM is available.

2 Architecture
Every Dart system has two components: A Dart implemen-
tation (compiler/interpreter; e.g., the Dart VM or dart2java)
and the Dart SDK. The latter one contains Dart source code
of core interfaces (such as int and Object) and standard
library classes. It is meant to be shared by all Dart imple-
mentations and provides two kinds of variation points for
Dart implementations. First, some methods are declared as
external: It is up to the Dart implementation to provide an
implementation for the method. And second, certain core
classes are pure interfaces (all methods are abstract) and it is
up to the Dart implementation to provide an implementation
class; only the public SDK interface type will be exposed to
programmers, not the implementation class type.

Compilation Process dart2java uses Analyzer and Kernel1
to generate a typed abstract syntax tree of every Dart class
(Figure 1). This Dart AST is then transformed into a Java AST,
generating one Java interface and one Java class for every
Dart class, along with generic specializations (Section 3.5).
The Java interface is necessary because every Dart class
implicitly defines an interface that can be implemented by
any class. The resulting Java source code can be compiled and
run with a copy of the compiled Dart SDK in the classpath.

1A front-end and an intermediate tree representation for Dart.

https://doi.org/10.1145/3098572.3098575
https://doi.org/10.1145/3098572.3098575
https://doi.org/10.1145/3098572.3098575

ICOOOLPS’17, June 19, 2017, Barcelona , Spain M. Springer, A. Krieger, S. Manilov, and H. Masuhara

Constructor Semantics Instance method for constructor body
Dynamic Type Java Reflection/Method Handles API
Factory Constructors Factory method is entry point for constructor
Getters / Setters Java method prefixed with get / set
Generic Reification First method/constr. arg.: class<C> object
Generic Covariance Type safety ensured by runtime type system
Implicit Interfaces Generate Java interface for Dart class
Keyword Parameters Implicit Map object as last argument
Lambda Functions Not supported yet
List / Map Literals Special List / Map constructor with varargs
Mixins Insert copy of mixin in hierarchy (fut. work)
noSuchMethod Run handler if Java Reflection lookup fails
Operators Ordinary Java method with name mangling
Optional Parameters Automatically-generated method overloads
Synchronization async / await are not supported yet
Top-level Members Special __TopLevel class
Type Casts Runtime type system check (if necessary) and

Java type cast

Figure 2. Translation of Dart Language Features to Java

int x = object.hashCode();Dart:

int x = ObjectHelper.getHashCode(object);

if (object == null) { return 2011; }

if (object instanceOf DartObject) {
 return object.getHashCode(); }

else { return object.hashCode(); }

Static type is int else

int x =
IntegerHelper.
getHashCode(
 object);

Static type is float/bool
...

Figure 3.Method call with name defined in Dart Object

The compilation process for the Dart SDK is mostly iden-
tical but starts with patching: Some external methods are re-
placed with pure Dart implementations. For example, the ex-
ternal factory constructor forMap is replaced with a concrete
one, creating an instance of LinkedHashMap, a class that
is implemented in Dart and shipped together with dart2java.
Patching allows us to implement external methods in Dart
without having to change the Dart SDK itself.

3 Code Generation
This section describes the Java code generation process (see
Figure 2 for an overview). The Dart source code is already
parsed and types are fully inferred at this point of time.

3.1 Datatypes
There are a number of type checking modes in Dart. In
unchecked mode, all type names are treated as mere com-
ments and actual types are inferred. dart2java is based on
strong mode which provides many type guarantees at com-
pile time. Types can either be specified by the programmer or
are inferred. Runtime type checking is required only for type
casts, implicit downcasts and when assigning (or passing as
an argument) an object whose type is generic.
Java provides boxed and unboxed versions for the primi-

tive types boolean, float, double, and integer. dart2java always
uses unboxed types, because they are significantly faster in

numeric applications2. Method calls on such objects are trans-
lated to invocations of static methods of helper classes (e.g.,
IntegerHelper.gcd for Dart int.gcd). Calls to meth-
ods defined in Dart Object are dispatched to a primitive
helper or to ObjectHelper, which can handle Dart ob-
jects, null, and ordinary Java objects outside of Dart’s class
hierarchy (Figure 3). The generated Java code never uses
boxed types except for the following cases: (a) Assignment
(including passing arguments during method calls) to a vari-
able (parameter) of type Object or num, and (b) Generic
classes with more than two type parameters (Section 3.5).
Every Dart class implicitly defines an interface that can

be implemented by any other class. dart2java creates a class
and an interface (ending with _IF) for every Dart class and
always uses the interface type during code generation except
for instantiation of classes and invocation of static methods.

Class Hierarchy Dart supports single inheritance, inter-
faces, and mixins. If no explicit superclass is specified, a Dart
class is a subclass of Object (a core interface defined in
the SDK). This interface provides the usual methods (e.g., for
equality checking) and is implemented by the hand-written
Java class DartObject, provided by dart2java. Every gen-
erated Java class implements exactly one interface: the in-
terface that is generated for that class. If the corresponding
Dart class implements other interfaces, the generated Java
interface extends those interfaces. Mixins are future work.

Constructors Dart constructors are more powerful than
Java constructors: There are ordinary constructors and fac-
tory constructors, which are also invoked with the new key-
word but are actually static methods (and can return existing
objects) with a return type that can be any subtype of the
class. Constructors can have names and classes can have
multiple constructors. In addition, there is special syntax for
field initialization (similar to C++), and a super constructor
can be invoked at any point of time. For all constructors, the
entry point in the generated Java code is a static method and
the constructor body is in an instance method because Java
constructors allow super calls only as the first statement.

3.2 Non-nullability of Primitive Types
Due to using exclusively unboxed types, null can no longer
be assigned to lvalues of primitive type. dart2java ships with
a modified version of Analyzer (the component performing
type inference) to ensure that such variables are explicitly
initialized with a non-null value in the Dart code. Casting
a null value at runtime results in a null pointer exception.
Moreover, dart2java’s implementation of Map throws an
exception when looking up a non-existent key, instead of
returning null (a change of language semantics).

2Integers bigger than Integer.MAX_VALUE are not supported.

dart2java: Running Dart in Java-based Environments ICOOOLPS’17, June 19, 2017, Barcelona , Spain

3.3 Reified Generics
In contrast to Java generics [2], Dart generics are reified, i.e.,
an object knows the binding of its generic type variables at
runtime (Java erases types). dart2java provides a runtime
type system for checking types during assignments. Every
Dart object has a field containing an object representing its
(fully reified) type. Type checks are inserted when assign-
ing/passing objects of generic type.

class A<T> {

boolean isString() => T == String;

void printMe(T item) { print(item); }

}

print(new A<String>().isString());

In the above example, the generated Java class will have a
type variable containing the fully reified type of A, which
will be used for type checking. Furthermore, printMe will
check if item is actually a string.

static final Type STR = /* ... */

static final Type A_STR = /* ... */

class A<T> implements A_IF<T> {

private Type type;

public A(Type type) {

this.type = type; this._constructor();
}

boolean isString() {

return type.typeParams[0] == STR;

}

void printMe(T item) {

TypeSystem.check(item, type.typeParams[0]);

dart.core.__TopLevel.print(item);

}

}

dart.core.__TopLevel.print(new A<String>(A_STR)⤦

Ç .isString());

Type checks for arguments of generic type have to be in-
serted due to generic covariance, as shown in the following
listing. The Java type system alone cannot detect the type vi-
olation at runtime, because type information is erased.

A<Object> a = new A<String>();

a.printMe(10); // runtime exception

Generic methods are also reified: An additional type object
per type parameter will be passed as an argument.

3.4 Covariant Generics
In contrast to Java generics, Dart generics are covariant. In-
tuitively, covariance [4] means that subtyping takes into
account the binding of generic type variables and requires
them to be in a subtyping relationship as well. For example,
List<int> is a subtype of List<Object> in Dart. Gen-
erated Java classes do not have to be generic. For example, a

generic Dart class A<T> could be translated to a non-generic
Java class A where all occurrences of T are replaced with
Object. However, generated Java classes are generic so
that the return values of their methods are easy to use from
Java code (without type casts). Type casts to raw types make
generated Java code compliant with the Java type system
while preserving covariance. E.g., the following code defines
a list of A and casts it to a list of Object, then to a list of
String. This should trigger an exception at runtime.

List<A> a = new List<A>();

List<Object> o = a;

// The following line causes a runtime error

List<String> s = o as List<String>;

// Analyzer reports a (compile-time) error

List<String> s = a as List<String>;

The generated Java code utilizes the runtime type system to
perform type checks for downcasts.

List_IF<A_IF> a = new List<A_IF>();

List_IF<Object_IF> o = (List_IF<Object_IF>)(⤦

Ç List_IF) a;

// The following line causes a runtime error

List_IF<String> o = (List_IF<String>) (List_IF)

TypeSystem.check(a, LIST_STRING_TYPE);

3.5 Generic Specializations
Using only unboxed versions of primitive types requires ad-
ditional work when combined with generics, because Java
allows only their boxed counterparts when used as type ar-
guments. dart2java could fall back to boxed types in such a
case. However, since Dart does not have an array datatype
and primitive types are widely used as generic types in many
applications (typically with lists or maps), including in the
benchmarks we used, dart2java generates specialized ver-
sions of generic classes for all primitive types.

For a generic class A<T>, dart2java generates four classes
and interfaces. One class and interface is generated for each
of bool (A__bool, A__bool_IF), double and int. The
fourth one (A<T>, A_IF<T>) is a generic class/interface
for all other types.

A_IF<T>

A__double_IF A__bool_IFA__int_IF

A<T>

A__double A__boolA__int

DartObject

ext. A__IF<Integer> ext. A__IF<Double> ext. A__IF<Boolean>

DartObject_IF

Figure 4. Generated Java Classes/Interfaces for A<T>

Figure 4 illustrates the subclass relationship between those
classes and interfaces. All generated classes are subclasses
of DartObject (generated Java class for the Dart class
Object) if no other superclass was specified. However, the

ICOOOLPS’17, June 19, 2017, Barcelona , Spain M. Springer, A. Krieger, S. Manilov, and H. Masuhara

MatrixMul De ltaBlue Richards Havlak Tracer FluidMotion Barns leyFern GameOfLife DiamondSquare

50

100

150

200

250

300

350

400

R
u

n
ti

m
e

 (
m

s)

1
5

4

2
0

6

9
2

1
3

4

2
6

8

5
3

1
6

7

1
2

2

8
1

2
2

5

2
0

4

9
5

1
9

2

2
7

2

9
1

1
6

3

1
2

3

2
2

1

2
7

9

2
8

8

2
0

8

2
7

1

2
5

8

2
1

8 2
5

6 2
7

7

2
8

0

2
7

3

1
3

1

9
1

1
4

2

0

1
4

8

2
0

9

7
0

1
5

2

1
5

2

7
1

6
8 7
2

0

8
5

2
0

5

4
6

1
2

3

dart2java (spec.) dart2java (unspec.) dart2java (unspec., boxed prim.) dart -c dart

Figure 5. Benchmarks comparing dart2java (with/without specializations, with only boxed primitives) and Dart VM (checked/unchecked).
All benchmarks ran repeatedly for 10 seconds after 7.5 seconds of warmup. Numbers are average running times for a single run.

specialized interfaces are subinterfaces of A_IF<T>, where
T is bound to the corresponding boxed type. This is neces-
sary because of covariance (e.g., A<int> is a subtype of
A<Object> in Dart). Inside a specialized class, all occur-
rences of T are replaced with the unboxed specialized type.
For classes with two generic type variables, all combi-

nations of specializations are generated (16 classes and in-
terfaces). No specializations are generated for classes with
more than two type variables because of the combinatorial
explosion of classes, but annotations could be used to specify
which types to specialize for [5].

dart2java’s implementation class for the SDK interface
List<T> is special: All of its specializations are hand-written
and backed by a Java array. The implementation of Map<K,
V> is written in Dart and backed by two Dart lists.

3.6 Delegator Methods
Unboxed primitive types are not subtypes of Object in
Java. Therefore, overriding amethod that consumes primitive
types with a method consuming non-primitive types (or vice
versa) requires additional effort. The problem is shown in its
most basic form in the following Dart source code snippet.

class A { void f(int a); }

class B extends A { void f(Object a); }

(new B()).f(10);

The generated Java source code would be mostly identical.
However, B.f does not override A.f; instead, it defines
a method overload. The method call invokes the method
defined in A. To solve this problem, dart2java adds delegator
methods for every method that consumes a primitive type
but has a subtype where the method is overridden with one
consuming a non-primitive type. Delegator methods perform
a type cast and call the actual method:

void B.f(int a) { f((Integer) a); }

Delegator methods are also required for generic special-
izations. For example, for the method List<T>.add(T
obj), dart2java generates a delegator method List__int.
add(Integer obj) (delegating to add(int obj)).
The rule for generating delegator methods is as follows.

When translating A.method, let S be the set of all super-
types of A, i.e., super classes, interfaces, super interfaces

and/or super types for generic type parameter bindings3.
E.g., for List<int>, S = {List<Object>, Object}.
For every s ∈ S , if method is defined in s and A.method is
not a valid Java override of s.method, generate a delegator
method in A with the signature of s.method4. A method
is not a valid Java override if the types of the parameters are
not identical/super types.

3.7 Benchmarks
Figure 5 shows the runtime of 9 benchmarks, comparing
dart2java with the Dart VM. We ran the Dart VM in both
checked mode and unchecked mode (the latter treats types
as mere comments). dart2java is based on strong mode with
additional compile-time type guarantees which is not avail-
able in the Dart VM yet, allowing us to avoid some runtime
type checks (see Dart Language Guide). The Dart VM is the
standard VM for Dart; ideally, dart2java should deliver per-
formance comparable to the Dart VM.We ran all benchmarks
on a system with an Intel Core i7-6820HQ CPU, 32 GB RAM,
Ubuntu 16.04.1, OpenJDK 1.8.0_111 and Dart VM 1.22.1.
Five benchmarks are taken from the “ton80” benchmark

suite. Havlak uses Map<int, BasicBlock>, so the spe-
cialized version is faster here. The speedup is even bet-
ter in FluidMotion, MatrixMul, DiamondSquare, which use
L<double>, L<L<int>>, L<L<int>>, respectively (L
means List). These three benchmarks along with Barns-
leyFern (a highly numeric benchmark) are an indicator that
the generated Java code with unboxed primitive types can
be executed faster on the JVM than on the Dart VM. How-
ever, some other benchmarks are slower in dart2java, mostly
due to the overhead of instance creation and our runtime
type system, which is not optimized for performance yet. In
Tracer, all variables have type dynamic. dart2java generates
code that uses the Java Reflection API and the Java Method
Handles API. It does not cache method lookup results or
perform any other optimizations [9]. The Dart VM can exe-
cute the same workload in less than one millisecond. Overall,
the performance of dart2java is comparable to the Dart VM,
even though the runtime type system is still unoptimized.
3For Map<int, int>, this includes Map<Object, int>, Map<int,
Object> and Map<Object, Object>.
4Our current implementation uses an unnecessarily more complex approach
with name mangling, resulting in more delegator methods. However, the
number of type casts and runtime method calls is identical.

dart2java: Running Dart in Java-based Environments ICOOOLPS’17, June 19, 2017, Barcelona , Spain

4 Language Interoperability
This section is mostly about future work. Some parts of our
current implementation were designed with interoperability
in mind, but more work has to be done.

Reusing JavaClasses Onemain design decision is to reuse
Java types as much as possible (Figure 6). For example, Dart
int is mapped to Java int. To make Dart objects eas-
ier to use from Java code, Java translations of Dart SDK
core interfaces should extend their Java counterparts. E.g.,
dart.core.List_IF should extendjava.util.List.
Methods should be defined in List_IF as default interface
methods in terms of Dart methods, if they are not already
provided by the Dart interface or have a different signature. If
methods are incompatible (different semantics or return type)
between Dart or Java, Dart methods can be name mangled
(and mangled method names must be used whenever Dart
code is translated). It seems that both languages are mostly
compatible; the only conflict that we found was List.add
which returns a boolean in Java but void in Dart. In our
current implementation, only the handwritten Dart List
implementation implements the Java List interface.

Using Java Classes in Dart There are three challenges in
making Java classes/interfaces and libraries usable from Dart
code. First, Analyzer requires some information about Java
classes for type checking. For that purpose, Dart interfaces
(adapters [7]) can be autogenerated for all Java classes of a li-
brary. For code generation, these interfaces must be mapped
to the corresponding Java classes. E.g., references to the auto-
generated interface adapter:util.List are translated
to java.util.List in generated Java code. No Java in-
terfaces will be generated for such adapters; they are only re-
quired for Analyzer. Second, certain Dart methods should be

dart:core.bool boolean
dart:core.Comparable<T> ⊳ java.lang.Comparable<T>
dart:core.double double
dart:core.int int
dart:core.Iterable<T> ⊳ java.lang.Iterable<T>
dart:core.Iterator<T> ⊳ java.lang.Iterator<T>
dart:core.List<T> ⊳ java.util.List<T>
dart:core.Map<K, V> ⊳ java.util.Map<K, V>
dart:core.Object dart._runtime.base.DartObject

⊳ java.lang.Object
dart:core.Set<T> ⊳ java.util.Set<T>
dart:core.String java.lang.String
dart:math.Random dart._runtime.base.DartRandom
dynamic java.lang.Object

adapter:util.List<T> java.util.List<T>
⊳ dart:core.List<T>
adapter:util.ArrayList<T> java.util.ArrayList<T>
⊳ adapter:util.List<T>

Figure 6. Partial Overview: Mapping between Dart Types and Java
Types. ⊳ denotes class/interface extension. If no name without ⊳ is
specified on the right side, a generated Java class/interface is used.

available on Java objects. If a Java interface has a correspond-
ing Dart interface, then the adapter should extend it. E.g.,
adapter:util.List should extenddart:core.List.
Missing or incompatible (different signature or semantics)
methods should be dispatched to a handwritten helper class
(e.g., ListHelper), which implements them in terms of ex-
isting Java methods. Third, the inheritance hierarchy of gen-
erated adapters should reflect the hierarchy of their respec-
tive Java classes. E.g., the adapter for ArrayList should
extend the adapter for List.

Generic Classes Generic classes in Java are not reified.
Therefore, covariant downcasts on imported generic Java
classes cannot be done in a type-safe way in Dart. This should
trigger a warning or could possibly be handled with wrap-
pers. If a Dart class is used from Java, the reified type must
be the first argument to the constructor. Since generated
Java classes also use Java generics, method return values of
generic type have proper types (and not just Object).

5 Related Work
There are two main techniques for language interoperability:
source-to-source compilation (e.g., dart2java, DDC, Type-
Script) and multi-language virtual machines [3, 12]. If the
languages are similar enough (like in dart2java), the meth-
ods and objects from the other language can directly be
used without naming or semantics conflicts. Otherwise, prox-
y/adapter objects/interfaces [6], name mangling or different
method calling notations [11] must be used.
dart2java generates all specialized versions for classes

with up to two type parameters. Alternatively, specializa-
tions could be generated when used [8], possibly using JIT
compilation, or specialization could be guided by annota-
tions [5]. In general, code with reified generics can be ex-
ecuted more efficiently than code with unreified generics,
because more information is known at runtime. For example,
L<String>[i] is guaranteed to always return a string. In
Java, a list of integers canmasquerade as a list of strings using
unsafe type casts. Therefore, Java has to add additional type
casts [1, 10]. Because dart2java emits Java code (not byte-
code), the resulting Java bytecode contains such (redundant)
type checks, even though our runtime type system already
ensures type safety (int list cannot masquerade as string list).
C# has reified generics and avoids such type checks [8].

6 Conclusion
We presented dart2java, a source-to-source compiler which
allows programmers to run Dart code on the JVM. Due to
the similarities of Dart and Java, we think that Dart is a good
fit for the JVM if performance considerations are taken into
account. As our benchmarks show, dart2java’s performance
is comparable to the Dart VM’s performance. Interoperability
between Dart and Java is still limited at this point of time
and subject to future work.

ICOOOLPS’17, June 19, 2017, Barcelona , Spain M. Springer, A. Krieger, S. Manilov, and H. Masuhara

Acknowledgments
We would like to thank Vijay Menon, Jennifer Messerly and
Leaf Peterson from Google Seattle for their guidance and
mentorship while working on this project.

References
[1] Gilad Bracha. Generics in the Java programming language. Sun

Microsystems, July 5, 2004.
[2] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler.

Making the future safe for the past: Adding genericity to the Java
programming language. OOPSLA ’98, pages 183–200. ACM.

[3] Thorsten Brunklaus and Leif Kornstaedt. A virtual machine for multi-
language execution. Technical report, Saarland University, 2002.

[4] Giuseppe Castagna. Covariance and contravariance: Conflict without
a cause. ACM Trans. Program. Lang. Syst., 17(3):431–447, May 1995.

[5] Iulian Dragos and Martin Odersky. Compiling generics through user-
directed type specialization. ICOOOLPS ’09, pages 42–47. ACM.

[6] Torbjörn Ekman, Peter Mechlenborg, and Ulrik Pagh Schultz. Flexible
language interoperability. Journal of Object Technology, 6(8):95–116,
2007.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-oriented Software. Addison-
Wesley Longman Publishing Co., Inc., 1995.

[8] Andrew Kennedy and Don Syme. Design and implementation of
generics for the .NET common language runtime. PLDI ’01, pages
1–12. ACM.

[9] Stefan Marr, Chris Seaton, and Stéphane Ducasse. Zero-overhead
metaprogramming: Reflection and metaobject protocols fast and with-
out compromises. PLDI ’15, pages 545–554. ACM.

[10] Jaime Niño. The cost of erasure in Java generics type system. Journal
of Computing Sciences in Colleges, 22(5):2–11, May 2007.

[11] Matthias Springer. Inter-language collaboration in an object-oriented
virtual machine. CoRR, abs/1606.03644, 2016.

[12] Jan Vraný. Supporting Multiple Languages in Virtual Machines. PhD
thesis, Czech Technical University, Prague, 2010.

A Links to Dart Components
● dart2java: https://github.com/google/dart2java
This repository also contains all the benchmarks used
in this paper and the generated Java source code.
● Dart Analyzer:
https://pub.dartlang.org/packages/analyzer
● Kernel: https://github.com/dart-lang/kernel
● Dart to JavaScript Compiler (DDC): https://github.com/
dart-lang/sdk/tree/master/sdk/lib/js/dart2js
● Dart Language Guide, strong mode:
https://www.dartlang.org/guides/language/sound-dart

B Appendix: Full Example
The following two listing shows a generic class in Dart code
along with the generated Java code (without generic spe-
cializations and interfaces). The static method new_ is the
Java entry point for the unnamed constructor. The other
static method is the entry point for the named constructor.
These methods create an instance of a specialized class or
the generic class, based on the (fully reified) type parameter.

class MyMap<K, V> extends Map<K, V> {
List<K> keys;
List<V> values;

int get size => keys.length;
bool get isEmpty => keys.isEmpty;

MyMap() {
keys = new List<K>();
values = new List<V>();

}

MyMap.fromList(List<K> keys, List<V> values)
: keys = keys, values = values;

V operator [](K key) {
for (int i = 0; i < keys.length; i++) {
if (keys[i] == key) {
return values[i];

}
}

throw "Key not found";
}

}

class MyMap<K, V> extends DartObject implements ⤦
Ç MyMap_IF<K, V> {

dart.core.List_IF<K> keys;
dart.core.List_IF<V> values;

int getSize() { return keys.getLength(); }
boolean getIsEmpty() { return keys.getIsEmpty(); }

public MyMap(Type type) {
this.type = type;

}

public static <K, V> MyMap_IF<K, V> new_(Type type){
MyMap_IF<K, V> instance;

if (type.typeParams[0] == INT_TYPE && type.⤦
Ç typeParams[1] == INT_TYPE) {
instance = new MyMap__int_int(type);

} else if (/* ... */) {
/* ... */

} else {
instance = new MyMap<K, V>(type);

}

instance._constructor();
return instance;

}

public static <K, V> MyMap_IF<K, V> new_fromList(⤦
Ç Type type, List_IF<K> keys, List_IF<V> values)⤦
Ç {
MyMap_IF instance;
// (Initialize instance)

instance._constructor_fromList(keys, values);
return instance;

}

public V operatorAt_MyMap(K key) {
for (int i = 0; i < getKeys().getLength(); i++) {
if (dart._runtime.helpers.ObjectHelper.⤦
Ç operatorEqual(getKeys().operatorAt(i), key)) {

return getValues().operatorAt(i);
}

}

throw new RuntimeException("Key not found");
}

}

https://github.com/google/dart2java
https://pub.dartlang.org/packages/analyzer
https://github.com/dart-lang/kernel
https://github.com/dart-lang/sdk/tree/master/sdk/lib/js/dart2js
https://github.com/dart-lang/sdk/tree/master/sdk/lib/js/dart2js
https://www.dartlang.org/guides/language/sound-dart

	Abstract
	1 Introduction
	2 Architecture
	3 Code Generation
	3.1 Datatypes
	3.2 Non-nullability of Primitive Types
	3.3 Reified Generics
	3.4 Covariant Generics
	3.5 Generic Specializations
	3.6 Delegator Methods
	3.7 Benchmarks

	4 Language Interoperability
	5 Related Work
	6 Conclusion
	Acknowledgments
	References
	A Links to Dart Components
	B Appendix: Full Example

