
BETA and Newspeak
Seminar Module Systems, SS2015

Fabio Niephaus, Matthias Springer

Hasso Plattner Institute, Software Architecture Group

May 21, 2015

BETA and Newspeak

Overview

Introduction

Unification: The Pattern

Nested Classes

Summary

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 2 / 27

BETA and Newspeak I Introduction

Introduction

• BETA: “A modern language in the Simula tradition”
− Designed by Birger Møller-Pedersen and Kristen Nygaard

(Scandinavian School)
− Class = Method = Pattern
− Nested Patterns

• Newspeak: “A new programming language in the tradition of Self and
Smalltalk”

− Designed by Gilad Bracha et al.
− Nested Classes
− No globals: all names are late bound

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 3 / 27

BETA and Newspeak I Unification: The Pattern

Overview

Introduction

Unification: The Pattern

Nested Classes

Summary

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 4 / 27

BETA and Newspeak I Unification: The Pattern

Patterns

• Classes and methods are patterns

• “Patterns [are] templates for generating objects (instances).”

• Objects are executable

Pattern: (#

Declaration1; Declaration2; ...; DeclarationN

enter InputArguments

do Implementation

exit OutputArguments

#)

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 5 / 27

BETA and Newspeak I Unification: The Pattern

Unification of Abstraction Mechanisms: The Pattern[7]

• Instances of a procedure are procedure activations

• Instances of a class are objects

• Instances of a function are function activations

• Instances of a type are values

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 6 / 27

BETA and Newspeak I Unification: The Pattern

Handout only: Similarities between Objects and Procedure
Activations

• Procedure activation = Activation record + execution of code

• Activation record is similar to object: data items and local procedures
(nested procedures in languages with block structure)

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 6E / 27

BETA and Newspeak I Unification: The Pattern

Example

(#

Account: (# balance: @integer;

Deposit:

(# amount: @integer

enter amount

do balance+amount->balance

exit balance

#);

Withdraw: (# ... #);

#);

account: @Account;

K1: @integer;

do

100->&account.Deposit;

50->&account.Withdraw->K1;

#)

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 7 / 27

BETA and Newspeak I Unification: The Pattern

Handout only: Beta Syntax

• (# ... #) for block structure

• @Type for static references

• ^Type for dynamic references

• &Type for instance creation

• [] aquires a references instead of object execution

• &Account[] returns a dynamic reference to a new account instance

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 7E / 27

BETA and Newspeak I Unification: The Pattern

Subpatterns
Specialization by Simple Inheritance

Resulting properties = inherited properties + new properties

Resulting behavior = inherited behavivor + new behavior

Resulting arguments = inherited arguments + new arguments

Resulting results = inherited results + new results

• Method execution starts at base method: use inner to call
specialized method

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 8 / 27

BETA and Newspeak I Unification: The Pattern

Handout only: Virtual Patterns and Pattern Variables

• Non-virtual pattern: entire type hierarchy has same pattern

• Virtual pattern: subtypes can have different patterns

• Pattern variables: every object can have a different pattern

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 8E / 27

BETA and Newspeak I Unification: The Pattern

Pattern (Design) Patterns

• Procedure Pattern: sequence of actions

• Function Pattern: sequence of actions with return value(s), does
not change state

• Class Pattern: template for generating objects

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 9 / 27

BETA and Newspeak I Unification: The Pattern

Expected Benefits of Unification[6]

• Design goals
− “The pattern mechanism should be the ultimate abstraction

mechanism, subsuming all other known abstraction mechanisms.”
− “The unification should be more than just the union of existing

mechanisms.”
− “All parts of a pattern should be meaningful, no matter how the

pattern is applied.”

• “Uniform treatment of all abstraction mechanisms. [...] It ensures
orthogonality among class, procedure, etc.”

• Functionality: subpatterns, virtual patterns, nested patterns, pattern
variables

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 10 / 27

BETA and Newspeak I Nested Classes

Overview

Introduction

Unification: The Pattern

Nested Classes

Summary

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 11 / 27

BETA and Newspeak I Nested Classes

Nested Classes
What is it?

• Class defined inside another class

• Part-of relationship: nested classes belong to the enclosing class

• Access to enclosing class (lookup depends on programming language)

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 12 / 27

BETA and Newspeak I Nested Classes

Nested Classes
Benefits

• Namespace for classes, avoiding name clashes

• Group together what belongs together: increase understandability
and readability

• A form of encapsulation, promoting development towards an
interfaces instead of an implementation (using visibility annotations)

• Support for more advanced features
(e.g. Class Hierarchy Inheritance)

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 13 / 27

BETA and Newspeak I Nested Classes

Nested Classes
Programming Languages

• Java: nested classes are non-virtual

• Ruby: inner classes/modules are non-virtual

• BETA, Newspeak: nested classes are virtual and can be overridden

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 14 / 27

BETA and Newspeak I Nested Classes

BETA Nested Classes

• Virtual methods can be overridden in subclasses

• Virtual classes can be overridden in subclasses

• Virtual patterns can be overridden in subclasses

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 15 / 27

BETA and Newspeak I Nested Classes

BETA Nested Classes

Reservation: (#

date: @Date;

Display:< (# do date.PrintToConsole; INNER; #)

#)

TrainReservation: Reservation (#

seat: @Seat;

Display::< (# do seat.PrintToConsole; INNER; #)

#)

(#

reservation: ^Reservation;

do

&reservation.Display

#)

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 16 / 27

BETA and Newspeak I Nested Classes

Handout only: BETA Nested Classes

Reservation: (#

date: @Date;

DisplayReservation: (# do date.PrintToConsole; INNER; #)

Display:< DisplayReservation

#)

TrainReservation: Reservation (#

seat: @Seat;

DisplayTrainReservation: DisplayReservation (#

do seat.PrintToConsole; #)

Display::< DisplayTrainReservation

#)

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 16E / 27

BETA and Newspeak I Nested Classes

Handout only: BETA Nested Classes

• Only virtual patterns can be overridden (denoted by :<)

• Overriding pattern must be a subpattern of superpattern

• Pattern execution starts with base pattern (inner instead of super)

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 16E / 27

BETA and Newspeak I Nested Classes

Example: Nested Classes in Newspeak [2]

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 17 / 27

BETA and Newspeak I Nested Classes

Handout only: Nested Classes in Newspeak [3]

• Methods: instance methods

• Classes: nested class definitions

• Slots: instance variables
• Module Definition: a class object that acts as a module

− has to be a top-level class
− has its own namespace which is represented by a platform object
− is stateless
− its external dependencies are listed at the top of the class

• Module: an instance of a module definition

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 17E / 27

BETA and Newspeak I Nested Classes

platform Object instead of Global Namespace[8]

• platform contains references to top-level modules required by the
application (mapping identifiers to top-level modules)

− Provided by the system: collections, file system, drawing, kernel
classes, . . .

− Provided by the developer: custom libraries
− Contains all dependencies required for deployment

• Created using IDE support, then object graph serialization

• Platform>>main:args: is the application’s entry point

• platform is similar to Squeak environments

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 18 / 27

BETA and Newspeak I Nested Classes

Instance Creation in Newspeak
Nested Classes in a Nutshell for Smalltalkers

1. Message send to class object: invoke factory method
(e.g. usingPlatform: or new)

2. Execute factory method: might initialize some slots
3. Generate class objects for nested classes lazily (s.t. optimizations)

Object subclass: #CombinatorialParsing

instanceVariableNames: ’CombinatorialParser SequentialParser

... OrderedCollection LinkedList parent platform ’.

CombinatorialParser class >>usingPlatform: platform

| inst | inst := self new.

inst OrderedCollection: platform collections OrderedCollection.

inst LinkedList: platform collections LinkedList.

^ inst

CombinatorialParsing >>StarParser

| nested | "important: nested is cached"

nested := self CombinatorialParser subclass: #StarParser

instanceVariableNames: ’parent subparser ’.

nested compile: ’parse: input ^ ...’

^ nested

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 19 / 27

BETA and Newspeak I Nested Classes

Example: Class Hierarchy Inheritance

?

COLLOR

COLLOR

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 20 / 27

BETA and Newspeak I Nested Classes

Handout only: Example: Class Hierarchy Inheritance

• ShapeLibrary: a library for geometrical shapes, containing classes Shape,
Circle, Rectangle

• Shape is superclass of Circle and Rectangle, and provides basic rendering
functionality

• Challenge: provide a module ExtendShapes which takes as input I any
ShapeLibrary and generates a modified ColorShapeLibrary where
ColorShapeLibrary.Shape has additional behavior for drawing colors

− I must have a nested class Shape

− Override ColorShapeLibrary.Shape with a new class whose superclass is
I .Shape (like method overriding)

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 20E / 27

BETA and Newspeak I Nested Classes

Example: Class Hierarchy Inheritance in Newspeak [1]

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 21 / 27

BETA and Newspeak I Nested Classes

Handout only: Class Hierarchy Inheritance → Smalltalk
Object sublcass: #ShapeLibrary

instanceVariableNames: ’Shape Circle Rectangle List Error Point ’.

ShapeLibrary >>Rectangle

| nested | "nested is cached"

nested := self Shape subclass: #Rectangle ...

... ^ nested

Object subclass: #ExtendShapes

instanceVariableNames: ’ShapesLibrary ColorShapeLibrary ’.

ExtendShapes class >>withShapes: shapes

| inst | inst := self new.

inst ShapesLibrary: shapes.

^ inst

ExtendedShapes >>ColorShapeLibrary

| nested | "nested is cached"

nested := self ShapesLibrary subclass: #ColorShapeLibrary

instanceVariableNames: ’Shape ’.

nested class compile: ’usingPlatform: platform ^ ...’.

nested compile: ’Shape | nested | "nested is cached" nested :=

super Shape subclass: #Shape. "add behavior to nested"’

^ nested
Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 21E / 27

BETA and Newspeak I Nested Classes

Handout only: Why Nested Classes are lazily initialized

• Consider nested classes are initialized in factory.

• ExtendedShape>>ColorShapeLibrary class>>usingPlatform: triggers
ShapeLibrary class>>usingPlatform: (super constructor call).

• ShapeLibrary class>>usingPlatform: creates Shape, Circle, Rectangle.

• ExtendedShape>>ColorShapeLibrary class>>usingPlatform: creates (overrides)
a new Shape class.

• Problem: Circle and Rectangle are still subclasses of the old Shape class.

• Solution: all names are late bound and method calls. The method
call Shape creates the class on demand the superclass factory runs the
subclass implementation (overridden).

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 21E / 27

BETA and Newspeak I Nested Classes

Method Lookup in Newspeak [1]

C S

O
O
C

O
C

Object

self send/ Inheritance

implicit receiver send

lexical
chain

Legend

enclosing classsuperclass

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 22 / 27

BETA and Newspeak I Nested Classes

Handout only: Method Lookup in Newspeak

• First enclosing classes (lexical chain)

• Then superclass hierarchy

• Never check superclass hierarchy of enclosing classes
• Different from BETA and Java: comb semantics

− Check receiver class and superclass hierarchy
− Check enclosing classes and superclass hierarchies

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 22E / 27

BETA and Newspeak I Nested Classes

Newspeak Avoids Method Name Clashes by Superclasses
Example

class Super {

//int m(){ return 42; }

}

class Outer {

int m(){ return 91; }

class Inner extends Super {

int foo(){ return m(); }

}

}

new Outer.Inner().foo()?

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 23 / 27

BETA and Newspeak I Nested Classes

Poor Man’s Nested Classes[4]

Classes as First Class Objects

• Scoping rules are different

• No convenient access to enclosing instance

• Hierarchy not reflected in the source code

• Bad tooling support

• No class hierarchy inheritance

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 24 / 27

BETA and Newspeak I Summary

Overview

Introduction

Unification: The Pattern

Nested Classes

Summary

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 25 / 27

BETA and Newspeak I Summary

Summary

• Pattern = Method = Class

• Nested patterns/classes: work like virtual methods in other
programming languages

• More than Java nested classes: Java nested classes are not virtual

• Workaround for nested classes in other programming languages:
factory

• No global namespace in Newspeak: platform object provides all
dependencies

• Newspeak: all names are late bound

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 26 / 27

BETA and Newspeak I Summary

References

1 Gilad Bracha, Peter Ahe, Vassili Bykov, Yaron Kashai, William Maddox and Eliot
Miranda. Modules as Objects in Newspeak.

2 Gilad Bracha, Peter Ahe and Vassili Bykov. Newspeak on Squeak: A Guide for the
Perplexed.

3 Gilad Bracha, Peter Ahe, Vassili Bykov, Yaron Kashai and Eliot Miranda. The
Newspeak Programming Platform.

4 http://gbracha.blogspot.jp/2013/01/inheriting-class.html

5 http://www.cs.au.dk/~beta/Manuals/r5.2.2/beta-intro/Virtual.html

6 Bent Bruun Kristensen, Ole Lehrmann Madsen, and Birger Møller-Pedersen. 2007.
The when, why and why not of the BETA programming language.

7 Madsen, O. L.: Abstraction and Modularization in the BETA Programming
Language.

8 http:

//gbracha.blogspot.de/2008/12/living-without-global-namespaces.html

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 27 / 27

http://gbracha.blogspot.jp/2013/01/inheriting-class.html
http://www.cs.au.dk/~beta/Manuals/r5.2.2/beta-intro/Virtual.html
http://gbracha.blogspot.de/2008/12/living-without-global-namespaces.html
http://gbracha.blogspot.de/2008/12/living-without-global-namespaces.html

	Introduction
	Unification: The Pattern
	Nested Classes
	Summary

