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BETA and Newspeak I Introduction

Introduction

• BETA: “A modern language in the Simula tradition”
− Designed by Birger Møller-Pedersen and Kristen Nygaard

(Scandinavian School)
− Class = Method = Pattern
− Nested Patterns

• Newspeak: “A new programming language in the tradition of Self and
Smalltalk”

− Designed by Gilad Bracha et al.
− Nested Classes
− No globals: all names are late bound
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BETA and Newspeak I Unification: The Pattern

Patterns

• Classes and methods are patterns

• “Patterns [are] templates for generating objects (instances).”

• Objects are executable

Pattern: (#

Declaration1; Declaration2; ...; DeclarationN

enter InputArguments

do Implementation

exit OutputArguments

#)
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BETA and Newspeak I Unification: The Pattern

Unification of Abstraction Mechanisms: The Pattern[7]

• Instances of a procedure are procedure activations

• Instances of a class are objects

• Instances of a function are function activations

• Instances of a type are values
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BETA and Newspeak I Unification: The Pattern

Handout only: Similarities between Objects and Procedure
Activations

• Procedure activation = Activation record + execution of code

• Activation record is similar to object: data items and local procedures
(nested procedures in languages with block structure)
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BETA and Newspeak I Unification: The Pattern

Example

(#

Account: (# balance: @integer;

Deposit:

(# amount: @integer

enter amount

do balance+amount->balance

exit balance

#);

Withdraw: (# ... #);

#);

account: @Account;

K1: @integer;

do

100->&account.Deposit;

50->&account.Withdraw->K1;

#)
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BETA and Newspeak I Unification: The Pattern

Handout only: Beta Syntax

• (# ... #) for block structure

• @Type for static references

• ^Type for dynamic references

• &Type for instance creation

• [] aquires a references instead of object execution

• &Account[] returns a dynamic reference to a new account instance
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BETA and Newspeak I Unification: The Pattern

Subpatterns
Specialization by Simple Inheritance

Resulting properties = inherited properties + new properties

Resulting behavior = inherited behavivor + new behavior

Resulting arguments = inherited arguments + new arguments

Resulting results = inherited results + new results

• Method execution starts at base method: use inner to call
specialized method
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BETA and Newspeak I Unification: The Pattern

Handout only: Virtual Patterns and Pattern Variables

• Non-virtual pattern: entire type hierarchy has same pattern

• Virtual pattern: subtypes can have different patterns

• Pattern variables: every object can have a different pattern
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BETA and Newspeak I Unification: The Pattern

Pattern (Design) Patterns

• Procedure Pattern: sequence of actions

• Function Pattern: sequence of actions with return value(s), does
not change state

• Class Pattern: template for generating objects
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BETA and Newspeak I Unification: The Pattern

Expected Benefits of Unification[6]

• Design goals
− “The pattern mechanism should be the ultimate abstraction

mechanism, subsuming all other known abstraction mechanisms.”
− “The unification should be more than just the union of existing

mechanisms.”
− “All parts of a pattern should be meaningful, no matter how the

pattern is applied.”

• “Uniform treatment of all abstraction mechanisms. [...] It ensures
orthogonality among class, procedure, etc.”

• Functionality: subpatterns, virtual patterns, nested patterns, pattern
variables
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BETA and Newspeak I Nested Classes

Nested Classes
What is it?

• Class defined inside another class

• Part-of relationship: nested classes belong to the enclosing class

• Access to enclosing class (lookup depends on programming language)
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BETA and Newspeak I Nested Classes

Nested Classes
Benefits

• Namespace for classes, avoiding name clashes

• Group together what belongs together: increase understandability
and readability

• A form of encapsulation, promoting development towards an
interfaces instead of an implementation (using visibility annotations)

• Support for more advanced features
(e.g. Class Hierarchy Inheritance)
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BETA and Newspeak I Nested Classes

Nested Classes
Programming Languages

• Java: nested classes are non-virtual

• Ruby: inner classes/modules are non-virtual

• BETA, Newspeak: nested classes are virtual and can be overridden
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BETA and Newspeak I Nested Classes

BETA Nested Classes

• Virtual methods can be overridden in subclasses

• Virtual classes can be overridden in subclasses

• Virtual patterns can be overridden in subclasses
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BETA and Newspeak I Nested Classes

BETA Nested Classes

Reservation: (#

date: @Date;

Display:< (# do date.PrintToConsole; INNER; #)

#)

TrainReservation: Reservation (#

seat: @Seat;

Display::< (# do seat.PrintToConsole; INNER; #)

#)

(#

reservation: ^Reservation;

do

&reservation.Display

#)
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BETA and Newspeak I Nested Classes

Handout only: BETA Nested Classes

Reservation: (#

date: @Date;

DisplayReservation: (# do date.PrintToConsole; INNER; #)

Display:< DisplayReservation

#)

TrainReservation: Reservation (#

seat: @Seat;

DisplayTrainReservation: DisplayReservation (#

do seat.PrintToConsole; #)

Display::< DisplayTrainReservation

#)
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BETA and Newspeak I Nested Classes

Handout only: BETA Nested Classes

• Only virtual patterns can be overridden (denoted by :<)

• Overriding pattern must be a subpattern of superpattern

• Pattern execution starts with base pattern (inner instead of super)
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BETA and Newspeak I Nested Classes

Example: Nested Classes in Newspeak [2]
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BETA and Newspeak I Nested Classes

Handout only: Nested Classes in Newspeak [3]

• Methods: instance methods

• Classes: nested class definitions

• Slots: instance variables
• Module Definition: a class object that acts as a module

− has to be a top-level class
− has its own namespace which is represented by a platform object
− is stateless
− its external dependencies are listed at the top of the class

• Module: an instance of a module definition
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BETA and Newspeak I Nested Classes

platform Object instead of Global Namespace[8]

• platform contains references to top-level modules required by the
application (mapping identifiers to top-level modules)

− Provided by the system: collections, file system, drawing, kernel
classes, . . .

− Provided by the developer: custom libraries
− Contains all dependencies required for deployment

• Created using IDE support, then object graph serialization

• Platform>>main:args: is the application’s entry point

• platform is similar to Squeak environments
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BETA and Newspeak I Nested Classes

Instance Creation in Newspeak
Nested Classes in a Nutshell for Smalltalkers

1. Message send to class object: invoke factory method
(e.g. usingPlatform: or new)

2. Execute factory method: might initialize some slots
3. Generate class objects for nested classes lazily (s.t. optimizations)

Object subclass: #CombinatorialParsing

instanceVariableNames: ’CombinatorialParser SequentialParser

... OrderedCollection LinkedList parent platform ’.

CombinatorialParser class >>usingPlatform: platform

| inst | inst := self new.

inst OrderedCollection: platform collections OrderedCollection.

inst LinkedList: platform collections LinkedList.

^ inst

CombinatorialParsing >>StarParser

| nested | "important: nested is cached"

nested := self CombinatorialParser subclass: #StarParser

instanceVariableNames: ’parent subparser ’.

nested compile: ’parse: input ^ ...’

^ nested
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BETA and Newspeak I Nested Classes

Example: Class Hierarchy Inheritance

?

COLLOR

COLLOR
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BETA and Newspeak I Nested Classes

Handout only: Example: Class Hierarchy Inheritance

• ShapeLibrary: a library for geometrical shapes, containing classes Shape,
Circle, Rectangle

• Shape is superclass of Circle and Rectangle, and provides basic rendering
functionality

• Challenge: provide a module ExtendShapes which takes as input I any
ShapeLibrary and generates a modified ColorShapeLibrary where
ColorShapeLibrary.Shape has additional behavior for drawing colors

− I must have a nested class Shape

− Override ColorShapeLibrary.Shape with a new class whose superclass is
I .Shape (like method overriding)
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BETA and Newspeak I Nested Classes

Example: Class Hierarchy Inheritance in Newspeak [1]

Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 21 / 27



BETA and Newspeak I Nested Classes

Handout only: Class Hierarchy Inheritance → Smalltalk
Object sublcass: #ShapeLibrary

instanceVariableNames: ’Shape Circle Rectangle List Error Point ’.

ShapeLibrary >>Rectangle

| nested | "nested is cached"

nested := self Shape subclass: #Rectangle ...

... ^ nested

Object subclass: #ExtendShapes

instanceVariableNames: ’ShapesLibrary ColorShapeLibrary ’.

ExtendShapes class >>withShapes: shapes

| inst | inst := self new.

inst ShapesLibrary: shapes.

^ inst

ExtendedShapes >>ColorShapeLibrary

| nested | "nested is cached"

nested := self ShapesLibrary subclass: #ColorShapeLibrary

instanceVariableNames: ’Shape ’.

nested class compile: ’usingPlatform: platform ^ ...’.

nested compile: ’Shape | nested | "nested is cached" nested :=

super Shape subclass: #Shape. "add behavior to nested"’

^ nested
Hasso Plattner Institute, Software Architecture Group BETA and Newspeak May 21, 2015 21E / 27



BETA and Newspeak I Nested Classes

Handout only: Why Nested Classes are lazily initialized

• Consider nested classes are initialized in factory.

• ExtendedShape>>ColorShapeLibrary class>>usingPlatform: triggers
ShapeLibrary class>>usingPlatform: (super constructor call).

• ShapeLibrary class>>usingPlatform: creates Shape, Circle, Rectangle.

• ExtendedShape>>ColorShapeLibrary class>>usingPlatform: creates (overrides)
a new Shape class.

• Problem: Circle and Rectangle are still subclasses of the old Shape class.

• Solution: all names are late bound and method calls. The method
call Shape creates the class on demand the superclass factory runs the
subclass implementation (overridden).
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BETA and Newspeak I Nested Classes

Method Lookup in Newspeak [1]

C S

O
O
C

O
C

Object

self send/ Inheritance

implicit receiver send

lexical 
chain

Legend

enclosing classsuperclass
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BETA and Newspeak I Nested Classes

Handout only: Method Lookup in Newspeak

• First enclosing classes (lexical chain)

• Then superclass hierarchy

• Never check superclass hierarchy of enclosing classes
• Different from BETA and Java: comb semantics

− Check receiver class and superclass hierarchy
− Check enclosing classes and superclass hierarchies
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BETA and Newspeak I Nested Classes

Newspeak Avoids Method Name Clashes by Superclasses
Example

class Super {

//int m(){ return 42; }

}

class Outer {

int m(){ return 91; }

class Inner extends Super {

int foo(){ return m(); }

}

}

new Outer.Inner().foo()?
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BETA and Newspeak I Nested Classes

Poor Man’s Nested Classes[4]

Classes as First Class Objects

• Scoping rules are different

• No convenient access to enclosing instance

• Hierarchy not reflected in the source code

• Bad tooling support

• No class hierarchy inheritance
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BETA and Newspeak I Summary

Summary

• Pattern = Method = Class

• Nested patterns/classes: work like virtual methods in other
programming languages

• More than Java nested classes: Java nested classes are not virtual

• Workaround for nested classes in other programming languages:
factory

• No global namespace in Newspeak: platform object provides all
dependencies

• Newspeak: all names are late bound
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BETA and Newspeak I Summary
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