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1 index data structures

Every database system can basically store arbitrary data. We can always store
tuples as a list of binary large objects (blobs) and, if we want to evaluate a query,
check for every tuple if it satisfies the query1. The crux of the matter is that this
usually takes too much time. An index data structure is an efficient lookup data
structure, which locates relevant tuples without having to analyze all tuples.
The key idea is to save some data redundantly, which costs hard disk and main
memory space, but accelerates operations on the database.

Common index data structures are B+ trees, hash indices and R trees. Every
index data structure is suitable for a specific type of data. For instance, most
database systems use B+ trees for linearly ordered data like numbers, because
B+ trees allow efficient range queries. PostgreSQL 9.1 has built-in support for
B+ trees, hash indices and GIN indices2.

The development of new index data structures is a cumbersome job, because
we have to think about complex problems like concurrency control and recovery.
Besides, we have to reimplement algorithms for searching and inserting into the
index data structure all over again, for every index data structure. Hellerstein
et al. estimated that the implementation of actual data-type-specific algorithms
and data structures made up only 20 percent of the code for implementing an
index data structure for PostgreSQL[1]. The PostgreSQL documentation states
that programmers can “define their own index [data structures], but that is
fairly complicated” [PostgreSQL 9.1.5 Documentation][2].

This paper describes the development of new index data structures for all
kinds of data. It is based on the paper Generalized Search Trees for Database Sys-
tems[1] by Joseph M. Hellerstein, Jeffrey F. Naughton and Avi Pfeffer.

2 generalized serach trees for database systems

The Generalized Search Tree for Database Systems (GiST) simplifies the devel-
opment of new index data structures. Instead of implementing a complete index
data structure, we only have to implement data-type-specific and query-specific
functionality. Thus, we distinguish between two types of procedures.

• GiST procedures are only implemented once, for instance by the GiST

database system producer. Among GiST procedures are algorithms for
searching and inserting into the GiST. These procedures also take care of
concurrency control and recovery.

1We also say, the tuple is consistent with the query.
2A GIN index is a modified version of a B+ tree.
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• Data type procedures are implemented for every index data structure. DATA

Among data type procedures are implementations of every supported
query operation, as well as four other procedures. All data type proce-
dures are entirely data-type-specific, such that they could be implemented
without understanding the concept of the GiST.

2.1 Notation
A GiST uses first-order predicate formulas as keys.

Definition P is the set of all predicate formulas. T is the set of all tuples.

Definition Single predicates are predicate formulas without logical operators.
For convenience, we call predicate formulas simply predicates.

• > (true) and ⊥ (false) are predicates.
• Binary functions f : T→ {>,⊥} are predicates.
• If a(t) is a predicate, then ¬a(t) is a predicate.
• If a(t) and b(t) are predicates, then a(t) ◦ b(t) are predicates,

with ◦ ∈ {∧,∨,→,←,↔}

Predicates always take exactly one parameter, which has to be a tuple3.

Definition An inner node N = {〈descM, ptrM〉 |M is a node} is a set of key-
pointer pairs. descM is the description of node M and ptrM is a pointer to node
M. For leaf nodes, M is a tuple.

Definition By subtree A we denote the subtree which is rooted at the node
A. The description descA of a subtree A is the key predicate associated to the
pointer, which points to nodeA. The description of the whole tree is descR = >,
where R is the root.

2.2 Structure
A GiST is a balanced search tree, which is very similar to a B+ tree. In contrast
to B+ trees, however, every node has the same number of keys and pointers.
Every node has a the same number of slots, which can be occupied by predicate-
pointer pairs. Leaf nodes point to tuples and inner nodes point to other nodes.

You can use single predicates to define certain properties, which tuples can
have. It is your job to implement single predicates, such that GiST algorithms
can evaluate, whether a tuple satisfies a predicate formula.

Example The predicate has_cancer(t)∧is_female(t) is a valid key for a medical
database. This predicate holds true for every female person t with cancer.

3> and ⊥ are constants and ignore the parameter.
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The description of every node must hold true for every tuple reachable from
that node.

Definition Let N be a node, tuples(N) be the set of all tuples reachable from
N and childs(N) be the set of all child nodes of N.

1. Let R be the root of the tree. descR := >
2. ∀s ∈ tuples(N): descN(s)

In contrast to a B+ tree, a GiST does not require descriptions on a higher level
to be logical consequences of descriptions on a lower level.

• B+ tree: ∀C ∈ childs(N): ∀t ∈ T: descC(t)→ descN(t)
• GiST: ∀C ∈ childs(N): ∀t ∈ tuples(C): descC(t)∧ descN(t)

(deduced directly from (1))

In contrast to B+ trees, keys on the same level do not necessarily have to be
disjunct within a GiST.

Figure 1: A GiST for a medical database.
has_cancer is not a logical consequence
of is_male, i.e. male people without can-
cer exist. The predicates has_cancer and
is_sick are not disjunct, because people
suffering from cancer are considered
sick. Thus, if we wanted to search for
people with cancer, you would have to
search in both subtrees.

has_cancer is_sick ...

is_male is_female

... ... ...

... ...

is_male

We did not specify an explicit formula for descN. There are many predicates
which satisfy the requirements in the previous definition. We will discuss how
to calculate descN in section 3.2.

3 a gist for integer set-valued data

We will develop a GiST, which will index sets of integers. The GiST will support
these single query predicates.

• contains(i, t) holds true for sets t, which contain i.
• contains_any(l, r, t) holds true for sets t, which contain at least one num-

ber i with l 6 i < r.
• contains_all(l, r, t) holds true for sets t, which contain all numbers i with
l 6 i < r.

• range(l, r, t) holds true for sets t, which contain only numbers i with
l 6 i < r.

We use range(l, r, t) as the only key predicate inside the nodes.
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3.1 Search
consistent(p, q) decides if p∧ q is satisfiable. DATA

Example Let p = range(1, 10, t) and q = contains(2, t)∧ contains(3, t). p∧ q

is satisfiable, for instance with t = {2, 3, 6, 8}.

Example Let p = range(1, 10, t) and q = contains_all(5, 15, t). p ∧ q is not
satisfiable, because t cannot include all integers i with 5 6 i < 15 and only
include integers i with 1 6 i < 10 at the same time.

For a single predicate q, we calcuate consistent(range(l, r, t), q) as follows4.
• consistent(range(l, r, t),>)
• ¬consistent(range(l, r, t),⊥)
• consistent(range(l, r, t), contains(i, t))↔ l 6 i < r

• consistent(range(l1, r1, t), contains_any(l2, r2, t))↔ l2 < r1 ∧ l1 < r2
5

• consistent(range(l1, r1, t), contains_all(l2, r2, t))↔ l1 6 l2 ∧ r1 > r2
6

• consistent(range(l1, r1, t), range(l2, r2, t))7, e.g. t = ∅
Many algorithms exist for deciding satisfiability for predicate formulas8, e.g.
Beth’s tableaux[3] method. We will not discuss them in this paper.

search(N,q) finds all tuples satisfying the query predicate q. GiST

The search is initiated by calling search(R, q), where R is the root of the GiST.

Algorithm 1: Pseudocode for search(N,q)

Data: N (node or tuple), q (query predicate)
Result: Output all tuples satisfying q

if N is tuple ∧ q(N) then
output(N)

else
for C ∈ childs(N) do

if consistent(descC, q) then
search(C, q)

The search algorithm might traverse more than one path in the tree, since the
key predicates do not have to be disjunct. Although a GiST is a balanced search

4We say consistent(p, q) if consistent(p, q) returns > and ¬consistent(p, q) otherwise.
5Both intervals intersect.
6[l1; r1) contains [l2; r2) entirely.
7It does not make sense to use range as a query predicate. Thus we need no implementation

for range. We must implement all other single predicates for search.
8All predicates are monadic, therefore satisfiability is decidable.
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tree, the number of visited nodes is not bound by O(logn) but bound by O(n)9,
where n is the number of tuples.

Figure 2: Example for search(R,
contains(7, t)). range(2, 10, t) and
range(5, 20, t) are consistent with
contains(7, t), so search is called
on these two childs. Let us take
a look at search(A, contains(7, t)).
The algorithm again follows the
two consistent keys range(5, 10, t)
and range(6, 9, t). Now search is
called on two tuples. The algorithm
evaluates contains(7, {5, 7, 9}) and
contains(7, {6, 8})a, but only the latter
tuple is output.

range(5,10)

... ...

range(6,9) range(1,6)

range(2,10) range(5,20) range(10,30)

{5, 7, 9} {6, 8} {1, 5}

R

A

aWe must implement every single (query) pred-
icate as a data type procedure. The algorithm
for evaluating a whole predicate formula is
a GiST procedure.

3.2 Insert
describe(P) calculates a description for a tuple or a set of predicates. DATA

Definition Let t be a tuple. describe(t) calculates a (key) predicate, such that
∀q ∈ P : q(t) → consistent(describe(t), q). Let P be a set of predicates. de-
scribe(P) calculates a predicate, such that ∀t ∈ T:

∨
p∈P p(t)→ describe(P)(t).

Example For a tuple t = {0, 1, 5}, describe(t) = range(0, 6, t)10 is a solution.

describe(P) calculates a predicate r, such that r is a logical consequence of any
predicate (description) within P. For integer set-valued tuple, we can calculate
describe as follows.

describe({range(l1, r1, t), range(l2, r2, t), . . .}) = range(min
i∈N

li,max
i∈N

ri, t)

Example For a set of tuples P = {range(2, 10, t), range(1, 5, t), range(15, 20, t)},
describe(P) = range(1, 20, t) is a valid solution.

In the previous example describe(P) = range(0, 1000, t) and describe(P) = >
are also valid solutions11. For efficiency reasons you should calculate a predi-
cate, which describes P as accurate as possible.

9Worst case scenario: all key predicates are >, so we visit all nodes.
10We only allowed range as a key predicate. contains_any(0, 6, t) is valid, but not allowed.
11> is not allowed, because range is the only key predicate.
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split(P) seperates a set of predicates into two disjunct sets. DATA

Definition Let P be a set of predicates. split creates two sets P1 and P2 with
P1 ∪ P2 = P, P1 ∩ P2 = ∅ and |#P1 − #P2| 6 1.

For efficiency reasons, you should choose P1 and P2 in such a way, that the
descriptions of P1 and P2, which are generated by describe, are as different as
possible. In other words, the descriptions should overlap as little as possible.
The overlap O is defined as follows.

O = {t ∈ T |describe(P1)(t)} ∩ {t ∈ T |describe(P2)(t)}

Example For tuples P = {range(2, 5, t), range(1, 8, t), range(6, 20, t)}, split(P)
should generate P1 = {range(2, 5, t), range(1, 8, t)} and P2 = {range(6, 20, t)}
with describe(P1) = range(1, 8, t) and describe(P2) = range(6, 20, t). The over-
lap is O = {6, 7}, because these numbers are contained in both ranges.
P1 = {range(1, 8, t), range(6, 20, t)} and P2 = {range(2, 5, t)} result in a bigger

overlap O = {2, 3, 4}, which is a worse solution.

To calculate split(P) for integer set-valued tuples, you can sort the elements of
P by the left range value and split the list in the middle12.

penalty(p, t) calculates how well two predicates fit together. DATA

Definition Let p and t be key predicates. penalty(p, t) calculates, to which
extent p needs to be generalized in order to be a logical consequence of t.

penalty(p, t) = #{u ∈ T |describe({p, t})(u)}− #{u ∈ T |p(u)}

Example Let p1 = range(1, 20, t), p2 = range(10, 25, t) and t = range(5, 15, t).
To decide, whether t fits best to p1 or to p2, we calculate the penalty for both
predicates.

describe(p1, t) = range(1, 20, t)

penalty(p1, t) = #{u | range(1, 20, u)}− #{u | range(1, 20, u)} = 0

describe(p2, t) = range(5, 25, t)

penalty(p2, t) = #{u | range(5, 25, u)}− #{u | range(1, 20, u)} = 5

p1 has a lower penalty than p2, so t fits better to p2. This is what we expected,
too, since the range t is completely contained in the range p1, whereas t just
intersects p2 partly.
12This algorithm does not always generate the optimal solution, but it is simple and fast.
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For integer set-valued tuples, we can calculate penalty as follows13.

penalty(range(lp, rp, u), range(lt, rt, u)) = max{lp − lt, 0}+ max{rt − rp, 0}

max{lp−lt, 0} is the expansion ofp to the left and max{rt−rp, 0} is the expansion
of p to the right.

chooseSubtree(N,p) determines into which leaf node we insert GiST

a tuple with description p.

Figure 3: Example for chooseSub-
tree. We insert a tuple t with p =
describe(t) = range(15, 31, t) into the
GiST with root R. chooseSubtree(R, t)
calculates penalty(range(1, 30, t), p) =
1, penalty(range(50, 64, t), p) = 35 and
an even worse penalty for the third
node. Therefore, we continue with
chooseSubtree(A, t). We choose the
node B with penalty(descB, p) = 6. B
is a leaf, chooseSubtree(R, t) = B.

range(79,98)range(50,64)range(1,30)

range(27,30)range(4,25)range(1,6)

...

range(10,25)range(4,20)

......

{4,5,6,7,11,19} {10,11,24}

R

A

B

...

Algorithm 2: Pseudocode for chooseSubtree(N, t)

Data: N (node), t (tuple to insert)
Result: Return leaf node to insert tuple into
if N is leaf then

return(N)
else

return

(
chooseSubtree

(
arg min
c∈childs(N)

penalty(descc,describe(t)), t
))

chooseSubtree is a greedy algorithm, which inspects one path from the root to a
leaf. It always chooses the node with the lowest penalty. It does not necessarily
find the optimal node to insert the tuple into.

splitInsert(N, t) inserts a node or tuple t into a node N. If N has GiST

no free slot, split creates two nodes from the N and t. splitInsert recursively
inserts predicate-pointer pairs for these two nodes in the parent node.

13For the insert procedure, we merely need to calculate penalty for the only key predicate range.
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In the worst case, splitInsert terminates after the root is split. Thus splitInsert
performs O(logn) insertions, where n is the number of tuples in the GiST.

Algorithm 3: Pseudocode for splitInsert(N, t)

Data: N (node), t (node or tuple)
Result: t part of N, return last insertion node
if N is full then

P1, P2 = splita ({〈descc, ptrc〉 | c ∈ childs(N)} ∪ {〈describe(t), ptrt〉})
parent(N)b.removec(〈descN, ptrN〉)
splitInsert(parent(N), P1)
return(splitInsert(parent(N), P2))

else
N.add(〈describe(t), ptrt〉)
return(N)

aFor convenience, we use split to split predicate-pointer pairs instead of just pointers.
bIf R is the root, parent(R) generates a new root node and returns the new node.
cRemoving predicate-pointer pairs from an empty root node has no effect.

We use descN for nodes N which are already part of the GiST. In contrast,
we use describe(N) for new nodes or tuples, for which we do not yet have a
description.

Example We want to insert the tuple {0, 1, 5} into node A in figure 2.

range(0,6) range(1,6)

{0, 1, 5} {1, 5}

A

{5, 7, 9} {6, 8}

range(5,10) range(6,9)
A1 2

range(2,10) range(5,20)
R

range(10,30)

... ...

(a) Nodes R and A after the first split of A.

range(0,5) range(1,6)

range(0,6) range(5,10)

{0, 1, 5} {1, 5}

R

A
range(5,10) range(6,9)

{5, 7, 9} {6, 8}

A1 2

...

range(5,20) range(10,30)
R1 2

range(0,10) range(5,30)
R

...

(b) The GiST after splitInsert(A, {0, 1, 5}).

Figure 4: (a) Node A is full, so it is split into the nodes A1 and A2.
(b) 〈range(2, 10, t), ptrA〉 is removed from node A. 〈range(0, 6, t), ptrA1

〉 is inserted
into R, but to insert 〈range(5, 10, t), ptrA2

〉, node R must be split, too. parent(R) creates
a new root and the predicate-pointer pairs for the split nodes R1 and R2 are inserted.
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adjustKeys(r,n) updates the descriptions above the insertion. GiST

Algorithm 4: Pseudocode for adjustKeys(R,N)

Data: R (root node), N leaf node of insertion
Result: All descriptions within R are accurate
if N 6= R∧ describe(N) 6= descN then

descN := describe(N)
adjustKeys(R,parent(N))

After inserting a predicate-pointer pair into a node, all descriptions of nodes
on the way to the root must be updated. Otherwise the search algorithm might
not realize that a subtree is relevant for a query. splitInsert already updates
all descriptions up to the highest node of insertion. Higher nodes must be
updated, until the root is reached or, at any point, the description does not
change anymore. In that case, the description is already accurate.

insert(R, t) inserts a tuple t into a GiST with root R. GiST

Algorithm 5: Pseudocode for insert(R, t)
Data: R (root node), t (tuple to insert)
Result: t inserted into R

T := chooseSubtree(R, t)
adjustKeys(R, splitInsert(T, t))

4 efficiency and implementation issues
consistent(p, q) Satisfiability for monadic predicates is decidable, but it is
NP-complete. The search algorithm operates correctly, even if consistent pro-
duces false positives, because every tuple is checked before it is output. In other
words, you can use a heuristic for satisfiability, which may always return >.
However, the quality of consistent has a severe effect on the performance of
search. False positives make search traverse parts of the tree, which are irrele-
vant for a query. It is your job to develop a consistent procedure which does
not produce too many false positive and can be calculated fast enough.

describe(P) Technically describe may always return >, since > is a logical
consequence of every predicate. However, it is critical for the performance of
search that describe generates an accurate description. Again, poor descriptions
will not make search fail, but they result in unnecessary tree traversals.

In section 2.2, we defined descN to hold true for all reachable tuples. We
explicitly did not require descN to be a logical consequence of all reachable
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(lower) descriptions. However, describe(P) only generates predicates which are
a logical consequence of P. Therefore, a GiST, as defined in this paper14, cannot
benefit from this feature. The definition of describe(P) could be changed to
consider all reachable tuples instead of only the descriptions, but this would
take considerably more time. A GiST could, however, benefit from our definition
of descN at bulk loading.

split(P) You should implement split in such a way, that it generates two sets
of tuples with a minimal overlap. A big overlap increases the probability for
search to traverse a high number of subtrees, because multiple child nodes
might seem relevant.

5 conclusion

The GiST is a framework, which simplifies the development of new index data
structures. The GiST procedures adjustKeys, insert, search and splitInsert con-
tain algorithms and database-specific functionality like locking and recovery.
For the development of a new index data structure, we only have to implement
the data type procedures consistent, describe, penalty and split15.

Non-GiST implementations of index data structures are usually more efficient
than GiST implementations, as they allow greater optimizations. The basic
idea of the GiST was never to provide maximum performance but to facilitate
development. An implementation of the GiST exists for PostgreSQL16.
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