
Matthias Springer
June 27, 2016 - October 7, 2016

dart2java
Internship Contributions

Internship at Google Seattle

● 4 buildings in Fremont, ~100 interns in Seattle + Kirkland offices
● Working in the Dart team (Host: Vijay Menon)
● Dart Sub-Teams in Seattle, Portland (OR), Mountain View, Aarhus (Denmark)
● Hierarchy: Dart team (still) “belongs” to the Chrome team
● Group project with 2 other PhD interns (Andrew Krieger, Stan Manilov)

2dart2java

Why another Programming Language?

● An experiment, playground (optional typing, “isolates”, “mirrors”)
● Most of Google’s codebase is in Java, but Google is not in control of the language and its development
● Previous: built-in support in Chrome (“Dartium”), as a replacement for JavaScript
● Patent issues (Oracle)... Moving towards another programming language (also on Android, Web, ...)

Why compile Dart to Java?
● Android applications are written in Java
● Explore if Dart is suitable for AOT compilation (think of iOS)
● Most of Google’s codebase is in Java (interoperability with legacy code)

3dart2java

Dart Programming Language

● Object-oriented programming language with Java-like syntax
● Supports classes, single inheritance, mixins, optional typing, dynamic typing
● Supports generic classes (reified and covariant)
● No explicit interfaces, but abstract classes and classes can be implemented

● Dart SDK: Defines core classes/interfaces
○ Core interfaces: dart:core.int, dart:core.num, dart:core:String, dart:core.List, ...
○ Core classes: dart:core.Stopwatch (may have external functions)

● Dart VM: Written in C++, available for various operating systems
● Dev Compiler: Experimental Dart-to-JavaScript compiler
● Analyzer: Performs type inference, type checking of Dart code, provides (typed) AST representation
● Kernel (AST): Tree-based intermediate representation of Dart code (new)
● Flutter: Framework for writing Android and iOS applications in Dart
● Dartino: Dart for embedded devices (discontinued)
● dart2java: Dart-to-Java compiler (my project)

4dart2java

Dart Example Source Code

class A {
 A(this.foo); // constructor
 int foo;

 dynamic method(int a) => a + foo; // base method
}

class B<T> implements A {
 int method(dynamic a) { // overridden method
 return super.method(10) as int + 10;
 }

 T get bar { // getter
 if (foo is T) { … } // generic type check
 return null;
 }
}

5dart2java

Dart Programming Language

● Object-oriented programming language with Java-like syntax
● Supports classes, single inheritance, mixins, optional typing, dynamic typing
● Supports generic classes (reified and covariant)
● No explicit interfaces, but abstract classes and classes can be implemented

● Dart SDK: Defines core classes/interfaces
○ Core interfaces: dart:core.int, dart:core.num, dart:core:String, dart:core.List, ...
○ Core classes: dart:core.Stopwatch (may have external functions)

● Dart VM: Written in C++, available for various operating systems
● Dev Compiler: Experimental Dart-to-JavaScript compiler
● Analyzer: Performs type inference, type checking of Dart code, provides (typed) AST representation
● Kernel (AST): Tree-based intermediate representation of Dart code (new)
● Flutter: Framework for writing Android and iOS applications in Dart
● Dartino: Dart for embedded devices (discontinued)
● dart2java: Dart-to-Java compiler (my project)

6dart2java

Dart Programming Language

● Object-oriented programming language with Java-like syntax
● Supports classes, single inheritance, mixins, optional typing, dynamic typing
● Supports generic classes (reified and covariant)
● No explicit interfaces, but abstract classes and classes can be implemented

● Dart SDK: Defines core classes/interfaces
○ Core interfaces: dart:core.int, dart:core.num, dart:core:String, dart:core.List, ...
○ Core classes: dart:core.Stopwatch (may have external functions)

● Dart VM: Written in C++, available for various operating systems
● Dev Compiler: Experimental Dart-to-JavaScript compiler
● Analyzer: Performs type inference, type checking of Dart code, provides (typed) AST representation
● Kernel (AST): Tree-based intermediate representation of Dart code (new)
● Flutter: Framework for writing Android and iOS applications in Dart
● Dartino: Dart for embedded devices (discontinued)
● dart2java: Dart-to-Java compiler (my project)

7dart2java

part of dart.core;

abstract class List<E> implements Iterable<E>, EfficientLength {

 external factory List([int length]);

 E operator [](int index);

 void operator []=(int index, E value);

 int get length;

 set length(int newLength);

 void add(E value);

 void sort([int compare(E a, E b)]);

 /* … */

}

Type is never exposed

Must be patched

Dart Programming Language

● Object-oriented programming language with Java-like syntax
● Supports classes, single inheritance, mixins, optional typing, dynamic typing
● Supports generic classes (reified and covariant)
● No explicit interfaces, but abstract classes and classes can be implemented

● Dart SDK: Defines core classes/interfaces
○ Core interfaces: dart:core.int, dart:core.num, dart:core:String, dart:core.List, ...
○ Core classes: dart:core.Stopwatch (may have external functions)

● Dart VM: Written in C++, available for various operating systems
● Dev Compiler: Experimental Dart-to-JavaScript compiler
● Analyzer: Performs type inference, type checking of Dart code, provides (typed) AST representation
● Kernel (AST): Tree-based intermediate representation of Dart code (new)
● Flutter: Framework for writing Android and iOS applications in Dart
● Dartino: Dart for embedded devices (discontinued)
● dart2java: Dart-to-Java compiler (my project)

8dart2java

part of dart.core;

class Stopwatch {

 void start() {

 if (_stop != null) {

 _start += _now() - _stop;

 _stop = null;

 }

 }

 void stop() {

 _stop ??= _now();

 }

 external static int _now();

}
Must be patched

Dart Programming Language

● Object-oriented programming language with Java-like syntax
● Supports classes, single inheritance, mixins, optional typing, dynamic typing
● Supports generic classes (reified and covariant)
● No explicit interfaces, but abstract classes and classes can be implemented

● Dart SDK: Defines core classes/interfaces
○ Core interfaces: dart:core.int, dart:core.num, dart:core:String, dart:core.List, ...
○ Core classes: dart:core.Stopwatch (may have external functions)

● Dart VM: Written in C++, available for various operating systems
● Dev Compiler: Experimental Dart-to-JavaScript compiler
● Analyzer: Performs type inference, type checking of Dart code, provides (typed) AST representation
● Kernel (AST): Tree-based intermediate representation of Dart code (new)
● Flutter: Framework for writing Android and iOS applications in Dart
● Dartino: Dart for embedded devices (discontinued)
● dart2java: Dart-to-Java compiler (my project)

9dart2java

Dart Types

● Typing is optional… Not so much anymore…

● Strong mode has additional type guarantees (some examples)
○ Checked: List<int> <: List <: List<String> <: List <: List<int>

Strong: List<int> <: List
○ Automatic downcasts still possible (e.g., Object a = 123; String b = a;)
○ Types of variables declared with var are inferred statically instead of using dynamic

● Optimistic type checking: Assume code is valid unless statically sure that it is not.

“The lack of static or runtime errors in the Dart specification's type rules is not an oversight; it is by design. It provides
developers a mechanism to circumvent or ignore types when convenient, but it comes at cost.” [1]

[1] https://github.com/dart-lang/dev_compiler/blob/master/STRONG_MODE.md

10dart2java

Unchecked Mode:

int foo = “Hello World”;

Strong Mode:

// Similar to checked mode but
// more strict, so we can
// detect more errors statically

Checked Mode:

int foo = “Hello World”;
// Fails at runtime, but can be
// detected with Analyzer

we are using this one

T assignable to S if
T <:S or S <: T

program semantics well-defined
regardless of static type errors

https://github.com/dart-lang/dev_compiler/blob/master/STRONG_MODE.md

Table of Contents

Slide 12 - 24

Slide 25 - 30

Slide 31 - 57

Overview of Compiler Infrastructure
class generation, method calls, bootstrapping

Benchmark Results

Dart Generics
covariance, reification, specialization

01 Overview of Compiler
 Infrastructure

Current State of Implementation

● Can compile lots of (strong mode-compliant) Dart code.
No support for named parameters, exception, large parts of the SDK, anonymous functions (lambdas), mixins.

● ~25 unit test suites, various codegen test cases, benchmarks: 5 from ton80 + various rendering benchmarks
● Support for generic classes. Generic methods partly supported (generic factory constructors are working).

Generics are reified, covariant, and specialized for primitive type parameters.
● Java is statically typed: Use specified types / types inferred by Kernel (and java.lang.Object for dynamic).
● Working run-time type system (sometimes overly-conservative) performing type checks.
● Source code available on GitHub: https://github.com/google/dart2java

13dart2java

void testTypeCheckFails() {

 Map<String, String> mapStringString = new Map<String, String>();

 Map<Object, Object> mapObjectObject = mapStringString;

 mapObjectObject["this should fail at runtime"] = new List<int>();

}

https://github.com/google/dart2java

Design Decisions

● Maximize Usage of Primitive Types: Use unboxed types wherever possible (int, double, boolean)
(Exception: classes with >2 generic parameters)

● Reuse Java Classes/Interfaces: Use Java primitive types and collection interfaces for performance and interop.
(→ Use Java generics together with our type system for reified types)

● Rely on Java runtime type checks whenever safe (performance)

14dart2java

High-level Overview

15dart2java

Dart Source
Code Kernel AST

Analyzer,
Kernel Loader Java ASTjava_builder.dart

Java Source
Code

java_emitter.dart

Compilation Process; in this talk:
● Dart Class → Java Class + Java Interface
● Generic Dart Class: Specializations for Primitive Types

Compiler
State

Type
Factory

compiler_state.dart type_factory.dart

Build SDK Process

gen/compiled_sdk/dart/core

Stopwatch.java

Stopwatch_interface.java

Map.java

Map_interface.java

Map__int_int.java

Map_interface__int_int.java

...

16dart2java

Dart SDK
(subset)

Patched
SDK

+ patches
+ Dart classes

● Patch external methods
● Pure Dart implementation of

LinkedHashMap

Java Sourcejava_builder.dart
Compiled

SDK (.jar)
+ helpers
+ Java classes

● Helpers when reusing Java classes
● Pure Java implementations of

DartList, DartObject

gen/compiled_sdk/dart/math

__TopLevel.java

Random.java

Random_interface.java

gen/compiled_sdk/dart/_runtime

DartObject.java

DartObject_interface.java

DartList.java

DartList__int.java

gen/compiled_sdk/dart/_internal

LinkedHashMap.java

LinkedHashMap_interface.java

LinkedHashMap__int_int.java

LinkedHashMap_interface__int…
...

Excluding object, int, bool, double, String, num

@patch
class Map<K, V> {
 @patch
 factory Map() {
 return new LinkedHashMap<K, V>();
 }
}

Example: List SDK Core Class

part of dart.core;

abstract class List<E> implements Iterable<E>, EfficientLength {

 external factory List([int length]);

 E operator [](int index);

 void operator []=(int index, E value);

 int get length;

 /* … */

}

17dart2java

patched @patch

class List<E> {

 @patch

 @JavaCall("dart._runtime.base.DartList.<E>factory\$newInstance")

 external factory List([int length = 0]);

}

Type System (Primitive Types)

18

Object

num

int doublebool

null

Stringa class

● Assignment of null to non-nullable type at compile type:
compile error

● Cast of null value to non-nullable type at run time:
NullPointerException

● Non-nullable variables must be initialized explicitly
Exception: Variables with generic types
(implicitly initialized to Java default)

dart2java

Object Model

19dart2java

java.lang.Object

int

bool

double

H

H

H

H
java.lang.Number

H
java.lang.String

H

Arrows indicate subclass relationships

“special” classes
In most cases: Classes that have a Java implementation.

H
Helper Class: Java class with static methods
providing implementation of Dart methods

Helper Class Example

package dart._runtime.helpers.IntegerHelper;

public static class IntegerHelper {
 public static int gcd(int self, int other) {
 if (b == 0) {
 return other;
 } else {
 return gcd(other, self % other);
 }
 }
}

// Dart: 10.gcd(5)
// Java: IntegerHelper.gcd(10, 5)

20dart2java

Object Model

21dart2java

java.lang.Object

dart._runtime.DartObject
+ interface

int

bool

double

dart.core.Iterable
+ interface

dart._internal.LinkedHashMap
(+ interface)

dart.core.Map_interface

dart._runtime.DartList

dart.core.List
_interface

H

H

H

H
java.lang.Number

H
java.lang.String

H

Arrows indicate subclass relationships/
interface implementations

(DartObject has an instance variable
storing the Type object for this object)

java.util.List

Example: Class Diagram (Dart → Java)

Dart:
class Foo { }
class Bar extends Foo { }

22dart2java

Foo

Foo_IF

DartObjectDartObject_IF

Bar_IF Bar

__TopLevel

Java Generics

List<int> unboxedList; // Compile time error
List<Integer> boxedList; // OK

boxedList = new LinkedList<Integer>();
boxedList.add(10); // auto-boxing

23dart2java

Example: Class Diagram (Dart → Java)

Dart:
class Foo<T> { }
class Bar extends Foo<int> { }

24dart2java

Foo<T> Foo__int Foo__bool Foo__double

Foo_IF<T>

Foo_IF__int
Foo_IF
__bool

Foo_IF
__double

DartObjectDartObject_IF

Bar_IF Bar

__TopLevel

all occurrences of T replaced by int

02 Benchmarks

Setting (Environment)
● Run on my workstation (Intel(R) Xeon(R) CPU E5-1650 v3 @ 3.50GHz)
● 4 Configurations

○ dart2java with generic specializations
○ dart2java without generic specializations
○ Dart VM checked (1.18.0-dev.2.0)
○ Dart VM unchecked (1.18.0-dev.2.0)

● 1 second warmup, 10 seconds running
(1 min. warumup results in minor speedup for dart2java)

26dart2java

} Analyzer Strong Mode

Unchecked Mode:

int foo = “Hello World”;

Checked Mode:

class A {
 int foo() { return 123; }
}

class B extends A {
 @Override Object foo() { return “Hello World”; }
}

A a = new B(); a.foo() + 10;

Strong Mode:

(strong type guarantees)

Checked Mode:

(more runtime checks)

633

0.
14

0.
12

Benchmark Results

27dart2java

633

0.
14

0.
12

Benchmark Results

28dart2java

Boxing/unboxing every
time a matrix is accessed

Lots of dynamic; lookup (Java
Reflection) is not cached

Uses Map<int,
BasicBlock>Few numeric

computations, no
primitive generic
type parameters

Uses List<double>
very frequently

Highly numeric, one
method with a loop

Uses List<List<int>>
for height values

Numeric after world is set
up; only 10 iterations here

Last three examples taken from:
http://divingintodart.blogspot.com/ (Davy Mitchell)

http://divingintodart.blogspot.com/
http://divingintodart.blogspot.com/

Specialization vs. Typed Data List

29dart2java

Uses List<double>

Uses
Float64List

633

Example: Barnsley Fern

int drawBarnsleyFern() {
 int checksum = 0;

 double x = 0.0;
 double y = 0.0;
 double nextx = 0.0;
 double nexty = 0.0;
 double plotDecider = 0.0;
 Random rng = new Random(1337);

 x = rng.nextDouble();
 y = rng.nextDouble();

 for (int i=0;i<50000;i++){

 plotDecider = rng.nextDouble();

 if (plotDecider<0.01)
 {
 x = 0.0;
 y = 0.16 * y;
 }

30dart2java

 else if (plotDecider < 0.86)
 {
 nextx = (0.85 * x) + (0.04 * y);
 nexty = (0.04 * x) + (0.85 * y) + 1.6;
 x = nextx;
 y = nexty;
 }
 else if (plotDecider < 0.92) {
 nextx = (0.2 * x) - (0.26 * y);
 nexty = (0.23 * x) + (0.22 * y) + 1.6;
 x = nextx;
 y = nexty;
 }
 else{
 nextx = (-0.15 * x) + (0.28 * y);
 nexty = (0.26 * x) + (0.24 * y) + 0.44;
 x = nextx;
 y = nexty;

 }

 int col = 100 + rng.nextInt(143);
 // crc.fillStyle = "rgb(0,$col,00)";
 checksum += (100 + (x*50).toInt() +
 500 - (y*40).toInt()) % 9971;
 }

 return checksum;
 }

https://github.com/daftspaniel/dartbarnsleyfern
© Davy Mitchell

https://github.com/daftspaniel/dartbarnsleyfern
https://github.com/daftspaniel/dartbarnsleyfern

03 Dart Generics

Reified Generics: Type Representation

32dart2java

Foo1<T>

DartObject

- type : Type

How does an instance of Foo1<T> know what T is?

var fooObject = new Foo1<T>();

→ fooObject.type is “Foo<(whatever T is)> type”

var fooInt = new Foo1<int>();

→ fooInt.type is “Foo<int> type”

bool test = anObject is T;

(Java)

Reified Generics

33dart2java

● Call Site:
○ Constructor Invocation: Retrieve Type from static variable

(hoisted) and pass as first argument.
○ Factory Invocation: Build TypeEnvironment at call site

and pass as first argument (if generic).
● Call Target:

○ Constructor: Store Type parameter in instance variable.
○ Factory: Regular translation process (static method),

but never use any hoisted types, but build all types from
scratch using passed TypeEnvironment.
(Factory might call a constructor or another factory.)

● Dart Objects
○ Type instance variable, used for type checks, passing type variable around

that is in scope.
○ DartList: Type variable + backed by reified generic array (T[])

new Foo1<int>(42)
⇒ Foo1._new(dart2java$typeExpr_Foo1$ltint0gt, 42)

new Foo1<int>.aFactory(42)
⇒ Foo1.aFactory$factory(<T → int>, 42)

new Foo1<...>.aFactory(obj);
⇒ Foo1._new(<T → ...>, obj)

DartObject

- type : Type

This slide is simplified: We hoist TypeExpr and not Type objects.

Java Generics for Interoperability

● Reified type information stored in Type instance variable
● For interoperability reasons: Use Java generics on top of that

34dart2java

Dart:

class Foo<A> {
A variable;

}

var x = new Foo<String>();

Java:

class Foo<A> extends DartObject implements Foo_interface<A> {
 public static Foo _new(Type type) { … }

 A variable;

 public A getVariable() { return variable; }
 public A setVariable(A value) { … }
}

Foo<String> x = Foo._new(<type obj>);

Current interoperability for core SDK classes:
DartList<T> implements java.util.List<T>

What it should be like (if I had more time):
List_interface<T> extends java.util.List<T>
Map_interface<K, V> extends java.util.Map<K, V>
Iterable_interface<T> extends java.lang.Iterable<T>
Iterator_interface<T> extends java.lang.Iterator<T>
Comparable_interface<T> extends java.lang.Comparable<T>

Covariant Generics

● Comes (almost) for free when only using the run-time type system

35dart2java

Dart:

Foo<Object> o;
Foo<String> s;

o = s;

Java:

Foo o;
Foo s;

o = s; // OK

Type checks inserted by
run-time type system omitted.

Covariant Generics

● Comes (almost) for free when only using the run-time type system
● Requires additional casts when combined with Java generics

36dart2java

Dart:

Foo<Object> o;
Foo<String> s;

o = s;

Java:

Foo<Object> o;
Foo<String> s;

o = s; // Does not compile
o = (Foo<Object>) (Foo) s; // OK
o = (Foo) s // OK (implicit cast)

List<? extends Object> o;
o = new List<String>(); // Works, but cannot consume objects

Type checks inserted by
run-time type system omitted.

See also: https://kotlinlang.org/docs/reference/generics.html

https://kotlinlang.org/docs/reference/generics.html

(Generic) Specialization: The Problem

● Goal: Avoid boxing of primitive types
● Bonus: Get rid of some type checks

● Specialize for bool, double, int

Bar<int> object;
object.method(123);
⇒ Bar<Integer> object;

object.method(123); (what we want)
object.method(new Integer(123)); (what we get)

37dart2java

Bar<C>

+ method(C a)

Bar<C>

+ method(C a)

Implicit Boxing

(Java)

Specialization: Separate Implementations

● Goal: Avoid boxing of primitive types
● Bonus: Get rid of some type checks
● Create copies of generic classes with 1-2 type parameters

(like C++ templates)
● Specialize for bool, double, int
● Invoke methods through specialized “unboxed” interface

Bar<int> object = new Bar<int>();
object.method(123);
⇒ Bar_IF__Int object = new Bar__Int();

object.method(123); ✓

38dart2java

Bar<C>

+ method(C a)

Bar__Int

+ method(int a)

Primitive
Specialization

Bar<C>

+ method(C a)

(Java)

Specialization: Covariance Problem

● Goal: Avoid boxing of primitive types
● Bonus: Get rid of some type checks
● Create copies of generic classes with 1-2 type parameters

(like C++ templates)
● Specialize for bool, double, int
● Invoke methods through specialized “unboxed” interface

Bar<Object> object = new Bar<int>();
⇒ Bar_IF<Object> object = new Bar__Int(); ✗

// compile error

39dart2java

Bar<C>

+ method(C a)

Bar__Int

+ method(int a)

Primitive
Specialization

Bar<C>

+ method(C a)

(Java)

Subtyping Relationship (1 Type Parameter)

40dart2java

G

I B D

G

I B D

DartObject

Bar<Object> object = new Bar<int>();
⇒ Bar_IF<Object> object = new Bar__Int();

// ✓ OK
// Bar__Int <: Bar_IF__Int
// <: Bar_IF<Integer> <: Bar_IF<Object>

interface Bar_IF__int
extends Bar_IF<Integer>

Subtyping Relationship (2 Type Parameters)

41dart2java

GG

GI BGIG GB

II IB BI BB

II IB BI BB

GI IG BG GB

GG

(only showing int, bool specializations)

Example: Class Diagram (Dart → Java)

Dart:
class Foo { }
class Bar extends Foo { }

42dart2java

Foo

Foo_IF

DartObjectDartObject_IF

Bar_IF Bar

__TopLevel

(same as on slide 12)

Example: Class Diagram (Dart → Java)

Dart:
class Foo<T> { }
class Bar extends Foo<int> { }

43dart2java

Foo<T> Foo__int Foo__bool Foo__double

Foo_IF<T>

Foo_IF__int
Foo_IF
__bool

Foo_IF
__double

DartObjectDartObject_IF

Bar_IF Bar

__TopLevel

Specialization: Adding the Missing Overloadings

● Goal: Avoid boxing of primitive types
● Bonus: Get rid of some type checks
● Create copies of generic classes with 1-2 type parameters

(like C++ templates)
● Specialize for bool, double, int
● Invoke methods through specialized “unboxed” interface

Bar<int> object; Bar<Object> object;
object.method(123); object.method(123);
⇒ object.method(123); ⇒ object.method(123);

44dart2java

Bar_IF<C>

+ method(C a)

Bar_IF__Int

+ method(Integer a)
+ method(int a)

Delegator
Method

Primitive
Specialization

Bar<C>

+ method(C a)

extends Bar_IF<Integer>

(Java)

Specialization: Name Mangling

● Goal: Avoid boxing of primitive types
● Bonus: Get rid of some type checks
● Create copies of generic classes with 1-2 type parameters

(like C++ templates)
● Specialize for bool, double, int
● Invoke methods through specialized “unboxed” interface
● Encode generic parameter binding in method name

Bar<int> object;
object.method(123);
⇒ object.method$int(123); ✓

Bar<Object> object = new Bar<int>();
object.method(123);
⇒ object.method(new Integer(123)); ✓

45dart2java

Bar_IF<C>

+ method(C a)

Bar_IF__Int

+ method(Integer a)
+ method$int(int a)

Delegator
Method

Primitive
Specialization

Bar<C>

+ method(C a)

extends Bar_IF<Integer>

(Java)

this is where
things went a

bit wrong

“Encoding Generic Types” is not Enough

46dart2java

Foo<A, B>

+ method(A a)

Bar<C>

+ method(C a)

extends Foo<C, int>

method$int_int

method$int

For specialization Bar<int>:
Obvious problems:

● Method overriding is broken

“Encoding Generic Types” is not Enough

47dart2java

Foo<A, B>

+ method(A a)

Bar<C>

extends Foo<C, int>

method$int_int

For specialization Bar<int>:
Obvious problems:

● Method overriding is broken
● If method is not overridden:

Calling a method that does not exist

Calling method$int fails!

“Encoding Generic Types” is not Enough

48dart2java

Foo<A, B>

+ method(A a)

Bar<C>

extends Foo<C, int>

method$int_int

For specialization Bar<int>:
Obvious problems:

● Method overriding is broken
● If method is not overridden:

Calling a method that does not exist

More serious problem:
● Foo and Bar have different type parameters
● Just because C is bool, it does not mean A

or B are also bool

“Encoding Generic Types” is not Enough

49dart2java

Foo<A, B>

+ method(A a)

Bar<C>

+ method(C a)

extends Foo<C, int>

method$int_int

For specialization Bar<int>:
Obvious problems:

● Method overriding is broken
● If method is not overridden:

Calling a method that does not exist

More serious problem:
● Foo and Bar have different type parameters
● Just because C is bool, it does not mean A

or B are also bool

Solution:
● Make class name of type parameters part of

the mangled method name:
method$Foo_int_int
method$Bar_int

for all superclasses
that have the method

Call Patterns involving Supertypes

● Exact class and exact specialization
List<int> myList = new List<int>();

● Superclass and (its) exact specialization (*)
Iterable<int> myList = new List<int>();

● Exact class and “super” specialization
List<Object> myList = new List<int>();

● Superclass and “super” specialization (*)
Iterable<Object> myList = new List<int>();

myList.isNotEmpty; ⇒ myList.getIsNotEmpty$Iterable_int

Encode in method name:
● Specialization (binding of type variables) of receiver
● Static type of receiver (to which the type variables belong)

→ required due to dynamic dispatch in (*)

50dart2java

1

2

3

4

Delegator Methods for Specializations

51dart2java

Foo<A, B>

+ method(A a);

Bar<C>

+ method(C a);

extends Foo<C, int>

class Foo__bool_int implements Foo_interface__bool_int {
void method(Boolean a);
void methodFoo_bool_int(bool a);
void methodFoo_gen_int(Boolean a);
void methodFoo_bool_gen(bool a);
void methodFoo_gen_gen(Boolean a);

}

class Bar__bool extends Foo__bool_int impl Bar_interface__bool {
void method(Boolean a);
void methodBar_bool(bool a);
void methodBar_gen(Boolean a);
void methodFoo_bool_int(bool a);

}

Dynamic dispatch
could also go here!

Optimization: No delegators are needed for subclasses: Determine call target statically and invoke method that is known to be defined.
This slide is simplified: Some delegator methods are default interface methods.

1

3

3

1

2

Future Work: Change Mangling Scheme

● dart2java currently mangles according to static type of receiver
List<int> list; list.add(10);
⇒ List_IF__int list; list.add$List_int(10);

● Why not mangle according to parameter types?
● Java overloads could take care of that: Java compiler does the mangling (except for return type).
● Consequences

○ No “super class/type” delegator methods
○ All delegator methods (and the implementation method) have the same name
○ Generate a delegator method involving a specialization for a type variable T only if the signature of the

method actually uses T

52dart2java

Specialization: Code Size Increase

53dart2java

● 1 Generic Parameter: 3 extra classes, 1 extra delegator method due to “super specialization”
● 2 Generic Parameters: 15 extra classes, 8 x 2 and 7 x 1 extra delegator methods due to “super specialization”
● Additional delegator methods due to “super class”:

For every overriding method m: number of superclasses (+impl. interfaces) that also define a method m

Example: LinkedHashMap<K, V> implements Map<K, V>
● 11 methods
● (8 * 2 + 7 * 1) * 11 = 253 delegator methods due to super specialization
● 15 * 11 = 165 delegator methods due to super class/implemented interfaces

Specialization: Code Size Increase

54dart2java

special because fully
implemented in Java
(type is never exposed)
→ no super spec deleg.

Specialization: Code Size Increase

55dart2java

Specialization: Code Size Increase

56dart2java

Summary

57dart2java

● Question: Is Dart suitable for execution on the JVM?
○ Many similarities between Java and Dart
○ Dart is very “static”, even more with Strong Mode:

few dynamic invocations, fixed class hierarchy at runtime, no on-the-fly class definition
● Question: Is Dart suitable for an AOT optimization scheme?

○ Yes, if your device has enough memory
○ C++ approach might be better

Generate specialized version upon first usage. However, user of library need access to its source code.
● Dart Infrastructure

○ Kernel AST ƴ, even better with the latest version!

A Appendix

At Office...

59dart2java

In Seattle...

60dart2java

Constructors and Factory Constructors

● Constructor: Returns new instance of specified class
● Factory Constructor: Returns instance of specific class or

instance of subclass of specified class
→ Similar to a static method, but can be used with new

● (Factory) constructors can be named

61dart2java

class Foo {
 Foo.c1(int a) {
 // Like an instance method
 }

 factory Foo.c2(var b) {
 if (b) {

 return new SubFoo();
 } else {
 return new Foo.c1(42);
 }
 }
}

abstract class List {
 external factory List([int length]);
}

Setting (Environment)
● Run on my workstation (Intel(R) Xeon(R) CPU E5-1650 v3 @ 3.50GHz)
● 4 Configurations

○ dart2java with generic specializations
○ dart2java without generic specializations
○ Dart VM checked (1.18.0-dev.2.0)
○ Dart VM unchecked (1.18.0-dev.2.0)

● 1 second warmup, 10 seconds running
(1 min. warumup results in minor speedup for dart2java)

62dart2java

} Analyzer Strong Mode

Unchecked Mode:

int foo = “Hello World”;

Checked Mode:

class A {
 int foo() { return 123; }
}

class B extends A {
 @Override Object foo() { return “Hello World”; }
}

A a = new B(); a.foo() + 10;

Strong Mode:

(strong type guarantees)

Types are “comments”

Rule of thumb: Type
checks if there’s a case

in which it would run

Do more checks at
compile time, good for

AOT compilation

