
CSE 231 Project Report

Danny Y. Huang, John Mangan, Matthias Springer

Department of Computer Science and Engineering
University of California, San Diego

ABSTRACT
In this work, we present an LLVM-based code analysis and
optimization framework. The framework builds and operates
on a control flow graph, based on the input program’s inter-
mediate LLVM representation. It runs an optimistic work-
list algorithm until a fixed point is reached by applying flow
functions over and over again.

We also present a meta-lattice pattern which abstracts
complexity out of our four analyses implemented: constant
analysis, range analysis, intra-procedural pointer analysis,
and available expressions analysis. Furthermore, we show
how to use the results from the constant analysis for con-
stant folding and constant propagation, and how to use the
results from range analysis to throw errors if an array index
is definitively out-of-bounds.

1. INTRODUCTION
Lattices and flow functions are abstract and often ob-

scure concepts in graduate computer science education. This
project attempts to bridge such theoretical knowledge with
hands-on experience, in which we implemented a number
of known compiler techniques from scratch, evaluated their
precision, and gained an in-depth understanding of LLVM
internals. As part of this intellectual exercise, we also con-
structed a general control flow analysis framework (§2) de-
signed for optimistic top-down analyses and optimations
over programs represented in LLVM IR.

In this paper, we describe four such analyses that lever-
age this framework. In particular, we implement code op-
timization for the first two analyses (§4 and §5). Through-
out the paper, we discuss the benefits and limitations that
SSA/mem2reg introduces, as well as how these affect some of
our design decisions. Moreover, we explain the unique chal-
lenges about the lattice design, and how our “meta-lattice”
is able to address some of the issues (§3).

2. ANALYSIS FRAMEWORK
In this section, we define the API of our analysis frame-

work and how it can be used to write new analyses.

2.1 Framework Architecture
Our framework consists of three important classes, shown

in Figure 1. Two of them are abstract and must be imple-
mented when writing a new analysis.

Lattice<T> This abstract class declares the interface for lat-
tice operations such as join and meet. It also stores

flow functions. The template parameter T defines the
datatype for lattice elements.

AnalysisPass This abstract class contains the methods for
building and printing the control flow graph, as well
as the worklist algorithm. Program optimization code
should be implemented in this class.

BlockNode<T> This class stores an LLVM basic block and
the lattice elements after applying the flow functions
on each instruction. It also contains pointers to the
successor nodes.

2.2 Framework Setup and Execution
Figure 2 gives a high-level overview of our framework and

shows how we can define and register flow functions and
optimization procedures.

Flow functions are defined in the Lattice class as static
functions that transform a lattice element/state into another
lattice element by analyzing an instruction. They are reg-
istered in the constructor and added to a dictionary that
maps instruction opcodes to flow function pointers. If the
algorithm encounters an operation without a flow function
during the analysis, the default flow function is used.

Optimization procedures are defined in the pass class as
static functions that get passed an instruction and the lattice
element after evaluating the flow function on this instruc-
tion. The registration of optimization procedures is simi-
lar to the registration of flow functions. Optimization pro-
cedures are executed only after the worklist algorithm is
done and a fixpoint was reached1. They operate on a per-
instruction basis, i.e. optimization procedures are called for
single instructions as opposed to single basic blocks or func-
tions. We can easily extend our framework to support per-
basic block or per-function optimization procedures, how-
ever, we do not need them for the optimizations presented
in this work. Optimization procedures are executed in the
same sequence as they were registered. This is important in
case some optimzations depend on other optimizations being
executed first.

3. THE META-LATTICE
In this section, we introduce an abstract concept that will

be applied in every analysis implementation explored in the
remainder of this paper. This single cross-cutting concept
is the hardest notion to grasp when convincing oneself that

1Intermediate results might be incorrect; therefore, we can
only do optimizations once a fixpoint has been reached.

1

-flow_functions : map<unsigned, FlowFunc*>

+Top() : T &
+Bottom() : T &
+Join(e1 : T &, e2 : T &) : T
+Meet(e1 : T &, e2 : T &) : T
+Subset(e1 : T &, e2 : T &) : boolean
+Initialize(m : BlockMap<T> &) : void
+EvaluateFlowFunction(in : T &, instr : Instruction *) : T
+F_Default(in : T &, instr : Instruction *) : T
+BranchSplit(in : T &, instr : BranchInst *, trueFlow : T &, falseFlow : T &)
#AddFlowFunction(opcode : unsigned, func : FlowFunc*)

Lattice

-block : BasicBlock*
-out_nodes : map<bool, BlockNode<T>*>
-in_elements : map<BlockNode<T>*, T>
-instruction_elements : map<Instruction*, T>

+SetOutNode(key : boolean, node : BlockNode *)
+SetInElement(node : BlockNode<T> *, element : T) : boolean
+EvaluateFlowFunction(lattice : Lattice<T> &) : set<BlockNode*>
+RunOptimizationPass(func : OptFunc *)

BlockNode

-nodes : set<BlockNode<T>*>
-opt_functions : vector<OptFunc*>

#GetLattice() : Lattice<T> &
#AddOptimizeInstructionPass(func : OptFunc *)
-BuildGraph(m : Module &, root_nodes : set<BlockNode<T>*> &)
-GetEntryElement() : T
-RunWorklistAlgorithm(worklist : set<BlockNode<T>*> &)
-Optimize() : void
-runOnModule(m : Module &) : boolean

AnalysisPass

llvm::ModulePass
T T

T

<<use>><<use>>

Figure 1: Framework class diagram.

build graph

worklist algorithm

optimize

setup framework

-F_Add(in : E &, instr : Instruction *) : E
-F_Load(in : E &, instr : Instruction *) : E
+F_Default(in : E &, instr : Instruction *) : E

ConcreteLattice

-flow_functions : map<unsigned, FlowFunc*>

+EvaluateFlowFunction(in : T &, instr : Instruction *) : T
#AddFlowFunction(opcode : unsigned, func : FlowFunc*)

Lattice

T

setup lattice

-lattice : Lattice<E>

-OptPassA(out : E &, instr : Instruction *)
-OptPassB(out : E &, instr : Instruction *)

ConcretePass

-opt_functions : vector<OptFunc*>

#GetLattice() : Lattice<T> &
#AddOptimizeInstructionPass(func : OptFunc *)

AnalysisPass

setup pass main_entry :
BlockNode

while_condition :
BlockNode

while_body :
BlockNode

main_block_2 :
BlockNode print results

Figure 2: Setting up the framework and running the analysis and the optimization.

each analysis will terminate. It is the goal of this section
to encapsulate this concern such that understanding and
defending its correctness may be done once and mitigated
everywhere else; not unlike aspects which modularize cross-
cutting concerns in a software’s architecture.

Goal.
To show that our analyses will terminate, we present lat-

tices for which numerous iterations of a work-list algorithm
will always converge to a fixed point. Our worklist algorithm
iterates over basic blocks, therefore we must first conceptu-
ally raise our flow functions from the granularity of instruc-
tions to basic blocks. We must then show progress towards
termination with each iteration over a basic block. This is
guaranteed if flow functions are monotonic and the lattice
has a fixed height, as a fixed point will then eventually be
reached. The complex notion this section aims to address is
how our abnormal lattices may formally (mathematically)
be shown to have a fixed height, while we leave monotonic-
ity of flow functions as a concern for the reader during later
sections.

Flow Function Granularity.
Our flow functions act at the granularity of a single in-

struction. Since a basic block consists of an ordered set of
instructions for which control flow cannot diverge, we can
imagine a big flow function F which “top-folds” (similar to a
left-fold) the instruction level flow functions together; thus,
F operates at the granularity of basic blocks.

As we will be running optimistic analyses, our flow func-
tions (if properly monotonic) must output a lattice element
that is “higher” in the lattice than the input lattice element
provided as input, or the equivalent lattice element if it has
reached a fixed point.

Must-be vs. May-be.
Before continuing, it is worth noting that each analysis

in this paper is a must-be analysis, as opposed to a may-
be. That is to claim that for any program point the output
produced must-be singularly representative, as opposed to a
super-set of all possible values that may-be representative.

It is worth clarifying that despite being a must-be analysis,
it can still be an infinite lattice. In fact, each analysis in this
paper will make use of an infinite width lattice. Any vari-
able output from an analysis must-be a single value, however
there are infinite potential values. By the end of this section,
the reader should be able to convince themself that it has
no affect on the correctness nor scale of our constructed lat-
tices. Any further thoughts of infinite lattices are therefore
omitted.

Resulting Lattice Elements.
For every analysis in this paper, each lattice element is a

mapping of variables to their analysis-specific state (ASS).
An ASS either stores the respective data that must-be rep-
resentative of the variable, or it represents an incomparable
state. It is also stateful for a variable to not map to an ASS.

Incomparable ASSs conservatively represent unusable
data for any optimization that would make use of the prod-

2

T = { }Ia

{ }Ca

T

= ∅
(a) Single variable meta-lattice with fixed height of 2.

Ia Cb{ }

{ }Ca

{ }Ia

Ca Ib{ }

{ }Cb

{ }Ib

T

= ∅

T = { }Ia Ib

Ca Cb{ }

(b) Double variable meta-lattice with fixed height of 4.

Figure 3: Two examples of meta-lattices with differing variable counts. vC & vI denote variable v mapped to a comparable
ASS or incomparable ASS, respectively.

uct of the analysis. Incomparable ASSs are generally con-
structed as the aggregation of a variable that must-be at
least two nonequivalent ASSs, where a contradiction would
be raised should the analysis imply it is one value but not
the other2.

A lattice element that does not have an ASS mapped for a
specific variable is implying that there is no knowledge (yet)
for said variable. It is liberal, in that it is willing to accept
any knowledge provided by a flow function for said variable,
and will optimistically accept it3.

Fixed Height Lattices.
To determine the fixed height of any lattice, we must first

determine the ⊥ (bottom) and > (top) lattice elements. For
all of this paper’s analyses, ⊥ will always be an empty map,
such that no variable has an associated ASS. Symmetrically,
> will consist of a mapping for every variable in the program
to an incomparable ASS (implying no optimizations can be
made from this analysis, except an optimization to avoid
executing any optimization passes). Since any program has
a finite quantity of variables (Vars), > will be of finite size.

At this point, we claim that every analysis in this paper
has a fixed height fh = 2 ·‖Vars‖ and provide a construction
argument, leaving a formal proof up to aspiring readers.

Lattice Construction.
Let us define a variable promotion as the variable’s map-

ping changing from non-existent ASS to a comparable ASS
or from a comparable ASS to an incomparable ASS. We
consider a non-existent ASS changing to an incomparable
ASS as two independent promotions.

A lattice element’s parent has exactly one promoted vari-
able differentiating it from the child. That is:

2For instance, consider the case where, at a merge, one
branch assumes that variable x must be the constant value
5 and the other branch assumes that x must be the constant
value 4.
3We will come back to this when handling PHI nodes.

pe = parent(e) ⇐⇒ ∃v ∈ e :

promoted(v) ∈ pe

∧ e− {v} = pe − {promoted(v)}

Following from this definition, each lattice element will
have n − i parents where n = ‖Vars‖ and i = “count of in-
comparable ASSs mapped to variables”. By iterating over all
variables that a lattice element does not map to an incom-
parable ASS, a parent lattice element can be constructed
by promoting the variable (independently per parent). Note
that some lattice elements will share some parents.

Finally, for any lattice element e there exist quantities i
and c of incomparable and comparable ASSs, respectively,
mapped to variables. The height of any lattice element e is
h(e) = 2i+c. Note that h(⊥) = 0 and h(>) = 2‖Vars‖.

For the remainder of this paper, we omit any discussion
about fixed lattice heights as the above has shown them to
be so. As long as flow functions are monotonic, iterating
over a basic block in our work-list algorithm will progress
towards a fixed point (trivially > if a more precise point
does not exist).

4. CONSTANT PROPAGATION
In this section, we present our must-be constant analysis

implementation and our constant propagation optimization
implementation.

4.1 Assumptions
The analysis runs on the output of mem2reg. Also, the

fact that registers in LLVM are only assigned once (SSA)
simplifies some flow functions.

4.2 Lattice Definition
With A = Z∪{ℵ}, we define the lattice for constant anal-

ysis as follows.

(D ,> ,⊥,t,u,v) =

(2{u→v |u∈Vars∧v∈A} ,{u→ ℵ |u ∈ Vars} ,∅,∪,∩,⊆)

3

Our domain is a mapping from variables to either a con-
stant integer value or ℵ (not a constant). Our implemen-
tation can easily be extended to support more data types.
> is the most conservative lattice element, which is always
safe to assume: every variable is not a constant. ⊥ is the
most optimistic lattice element: every variable can be any
constant.

Example.
{x→ 4, y → ℵ} implies that the value of x is the constant

4 and y is not constant. If there are more variables in the
program code, e.g. z, then we do not have any knowledge
about them at this time.

Flow Functions.
The flow functions for assignment, addition and PHI

nodes are defined as follows. Flow functions for other arith-
metic operations are similar to addition.

FX:=Y (in) = in − {X → ∗}
∪ {X → c |Y → c ∈ in}

Note, that we do not have a flow function for an assignment
X := Y in our implementation, since LLVM would use Y at
any point where X is needed.

FX:=Y +Z(in) = in − {X → ∗}
∪ {X → c | Y → a ∈ in

∧ Z → b ∈ in

∧ c = a + b }

Note, that ℵ+ x = x + ℵ = ℵ for any x ∈ Z.

FX:=Φ(Y,Z)(in) = in − {X → ∗}
∪ {X → c | Y → c ∈ in

∧ Z → c ∈ in }
∪ {X → ℵ | Y → c1 ∈ in

∧ Z → c2 ∈ in

∧ c1 6= c2 }

Note that for readability reasons, all three flow functions do
not handle constants directly. In the actual implementation,
we check first whether a value is a constant, otherwise, we
do the lookup in in.

FX:=Unknown(in) = in ∪ {X → ℵ}

If an instruction unknown, i.e. no flow function is defined
for it (e.g. function calls, floating point operations in our
implementation), we set the result to not constant.

Fmerge(in1, in2) = in1 ∪ in2

Due to SSA, all registers are only assigned once. In case a
variable is assigned twice at different positions and the two
control flows merge, LLVM creates two different registers

that are merged using a PHI node. It is safe to union in1 and
in2 without checking for duplicate registers, because every
control flow must assign different registers. In mathematical
terms, the following statement always holds true.

∀v ∈ Vars : v → c1 ∈ in1 ∧ v → c2 ∈ in2 ⇒ c1 = c2

4.3 Implementation of Analysis

Data Structures.
We represent lattice elements by a mapping from

llvm::Value* to MaybeInt64, which is a tuple/C++ class
representing an ASS (§3) over constant integer values. May-
beInt64 contains an integer value and an is_const flag. Be-
fore the analysis begins, all nodes in the CFG are initialized
with ⊥ = ∅.

Data Types.
To simplify our implementation, we decided to handle only

integer constants. We can easily extend our implementation
to support floats and other data types as follows. Instead
of integers, we store llvm::Constant* pointers, where Con-

stant is an abstract LLVM class that could be a constant
integer, a constant float, or any other kind of constant. We
then simply create flow functions for differing types, as well
as mitigate type differences as appropriate within flow func-
tions for instructions that act on numerous types. LLVM
guarantees that equivalent constants have the same pointer,
making it easy to check if two registers contain the same
constant.

Flow Function for Division.
While folding a division or modulo operation, we check if

the divisor is zero. In that case we exit with a divide-by-zero
error.

Folding Complex Expressions.
In LLVM, all arithmetic operations take two operands.

When we compose a more complex expression, clang gener-
ates code that stores intermediate results in registers. LLVM
has an infinite amount of registers and they are only assigned
once (SSA). Since we assume that we run mem2reg first, we
only handle registers in our analysis instead of memory lo-
cations4. Since complex expressions are split into multiple
smallers ones, our analysis can infer their constant value by
folding the smaller subexpressions.

4.4 Implementation of Transformation
Our program transformation consists of two steps: propa-

gating constants and removing unnecessary instructions, i.e.
instructions that compute constants.

Propagating Constants.
Our framework invokes the optimization function for ev-

ery instruction and the result of the flow function after this
instruction (out). We iterate through all operands of the in-
struction and check if they are in out and comparable (con-
stant). In such a case, we create a new LLVM constant object
and replace the previous operand with it.

4Therefore, Vars does not denote the set variables but the
set of registers, i.e. instructions in the program code.

4

Removing Unnecessary Instructions.
Our implementation assumes that we operate on the re-

sult of mem2reg. Therefore, all constants that were propa-
gated in the previous step result from constant folding, be-
cause mem2reg puts constants directly into the instruction as
operands instead of loading them from memory. All propa-
gated values (i.e. the original operands) can now be removed
from the IR completely. This effectively results in removing
dynamic computation that was completed in constant fold-
ing, since these values are the instructions themselves in
LLVM.

4.5 Benchmarks
In this section, we present an interesting case where a

constant could be folded in theory, but it is not considered
constant by our implementation. Consider the following C-
style pseudo code.

int a = 12, b = 10;

if (*)

a += 10;

else

b += 10;

int c = a + b;

In this example, we do not detect that c is a constant. It
is interesting to see the optimized LLVM IR code.

if.end:

%a.0 = phi i32 [22, %then], [12, %else]

%b.0 = phi i32 [10, %then], [20, %else]

%add = add nsw i32 %a.0, %b.0

Although we do the constant folding for a and b inde-
pendently, we cannot detect that their sum is always 32,
because the PHI node is not constant and can, therefore,
not be folded.

The solution is to adapt our flow functions. Instead of just
checking whether the operands are both constant, also check
whether both one or both operands are PHI nodes.

• Both operands are constant: fold the constants di-
rectly.

• One operand is constant, the other one is a PHI node:
if constant folding was possible here, both operands
of the PHI node would have to be the same constant.
But then, we would already have folded the PHI node
itself. Therefore, no constant folding is possible.

• Both operands are PHI nodes: if both PHI nodes
share at least one common label in the operands (e.g.
[22, %then] and [10, %then]) and the PHI nodes’
operands are constant, fold the operands for both cases
(e.g. 22 + 10, 12 + 20). If we get the same constant re-
sult in both cases (e.g. 32 and 32), fold the constants. If
all labels are different, we have to check four different
cases, but the same logic applies.

Now assume that at least one operand of the PHI nodes is
not constant but another PHI node. In that case, we could
consider both operands of this PHI node. But every time
we add another PHI node to the calculation, the number of
different paths doubles.

4.6 Lessons Learned

Unknown Values in PHI Nodes.
Although not shown above, we optimistically implement

the PHI flow function by skipping unmapped operands for
which we do not (yet) have any knowledge. The assumption
is that they are either dead variables and therefore will never
be chosen by the PHI node, or that they will eventually
be known and thus mapped to a value which will force the
worklist algorithm to eventually reiterate over the current
basic block (with the PHI instruction) which will correct
any misplaced optimism and any derived values from it.

Constant Propagation during Analysis.
The goal of the optimization step is to replace all known

variables with the corresponding constants. Initially, we de-
cided to do the replacement after analyzing an instruction
(except for PHI nodes). For example, suppose we knew that
x → 5, and that we encountered the addition instruction
y = x + 2. We were going to immediately replace any refer-
ences of y with y = 5+2 = 7. This, however, would introduce
errors stemming from the prior paragraph. We did the re-
placement before the worklist algorithm completed. Thus,
any replacement could potentially be incorrect, as the al-
gorithm guarantees correctness only after it completes. To
solve this problem, we ran the constant propagation step
after the worklist algorithm was done. Similarly, throwing
an error for divide-by-zero must be carefully implemented
in case a later iteration updates the mapping of the variable
to a non-zero value.

Removing Instructions.
We made another mistake while propagating constants,

in which we replaced variables with constants within expres-
sions. In other words, if x→ 5 and we encountered y = x+2
later, we would replace x with 5 within the addition instruc-
tion. Effectively, the program would contain the instruction
y = 5 + 2. Since y is propagated to whereever it is used,
the addition is redundant; removing it will not affect the
program’s result at all.

Given this assumption, we started removing instructions.
Unfortunately, this violated two aspects of the program
logic.

The first violation concerned the integrity of C++ iter-
ators. Recall that an instruction was obtained as an iter-
ator from basic blocks. While we went through all the in-
structions, we pre-incremented the iterator (i.e. ++iterator)
for performance. Removing an instruction would break the
chain of iterator pointers; by the time the iterator was to be
incremented, it had already been set to NULL, thus causing
the application to seg-fault.

The solution was to post-increment the iterator instead.
This actually stored the iterator value in a temporary regis-
ter, incremented the original, and continued using the tem-
porary value even though the original one had already been
nullified. The chain of iterator pointers was broken. Nonethe-
less, we would not run into segmentation faults.

The second violation was related to references. We were
removing instructions that were deemed redundant, but
there could still be instructions in later basic blocks that

5

would refer to these redundant instructions5. These depen-
dent instructions would face an invalid def-use chain—an
actual error that LLVM would throw. The solution was
to drop these references by calling removeFromParent and
dropAllReferences on the redundant instructions.

These two solutions allowed us to safely remove instruc-
tions whose values had been propagated into the rest of the
code. The optimization step reduced code size and could
potentially enhance performance.

5. RANGE ANALYSIS
In this section, we present our must-be in range analy-

sis that assigns every register a range/interval of possible
values.

5.1 Assumptions
We developed and implemented this analysis under the

following assumptions.

• For simplicity, each variable is of type unsigned long.
We do not handle floats, and we do not handle the
sext instruction.

• If we do not know a variable’s upper bound, we set it
to positive infinity. Likewise, an unknown lower bound
is represented as negative infinity.

• We operate on the result of mem2reg and do not handle
memory access.

• This is a must-be analysis. The analysis throws a warn-
ing only when we are absolutely certain of an impend-
ing out-of-bounds error.

5.2 Lattice Definition
Our lattice for the range analysis is a more general case

of the constant analysis lattice and is defined as follows.

(D ,> ,⊥,t,u,v) =

2{u→v |u∈Vars∧v∈A} ,{u→ I |u ∈ Vars} ,∅,∪,∩,⊆)

We define A = (Z ∪ {−∞,+∞})2 and I = (−∞,+∞).
Note, that all ranges are considered bounds-inclusive.

Flow Functions.

FX:=Y (in) = in − {X → ∗}
∪ {X → r |Y → r ∈ in}

FX:=Y +Z(in) = in − {X → ∗}
∪ {X → (l, u) |Y → (l1, u1) ∈ in

∧ Z → (l2, u2) ∈ in

∧ l = l1 + l2

∧ u = u1 + u2 }

5This happens even though we replace the instruction in all
operands of all instructions with a constant value in the first
optimization function (constant propagation).

When we encounter an addition, we add the lower and upper
ranges of both operands.

FX:=Y−Z(in) = in − {X → ∗}
∪ {X → (l, u) |Y → (l1, u1) ∈ in

∧ Z → (l2, u2) ∈ in

∧ l = l1 − u2

∧ u = u1 − l2 }

Similarly to the addition case, we can come up with a simple
scheme that computes the new lower and upper bound.

FX:=Y ∗Z(in) = in − {X → ∗}
∪ {X → (l, u) |Y → (l1, u1) ∈ in

∧ Z → (l2, u2) ∈ in

∧ p1 = l1 ∗ l2
∧ p2 = l1 ∗ u2

∧ p3 = u1 ∗ l2
∧ p4 = u1 ∗ u2

∧ l = min(p)

∧ u = max(p) }

For the multiplication case, have to consider all four possi-
bilities of multiplying the lower and upper bounds. For this
flow function, we assume that lower and upper bounds can
also be negative.

FX:=Φ(Y,Z)(in) = in − {X → ∗}
∪ {X → (l, u) |Y → (l1, u1) ∈ in

∧ Z → (l2, u2) ∈ in

∧ l = min(l1, l2)

∧ u = max(u1, u2) }

Note, that, for readability reasons, all three flow functions
do not handle constants directly. In the actual implementa-
tion, we treat a constant c as (c, c).

Fmerge(in1, in2) = in1 ∪ in2

5.3 Implementation of Analysis

Data Structures.
We represent lattice elements by a mapping from

llvm::Value* to MaybeInt64Range, which is a tuple/C++
class containing a constant integer range. Before the analysis
begins, all nodes in the CFG are initialized with ⊥ = ∅. This
is similar to the data structure in our constant analysis.

Data Types.
To simplify our implementation, we decided to handle only

integers. We can easily extend our implementation to sup-
port floats and other data types as follows. The same argu-
ments as in the constant analysis also applies here.

6

5.4 Out-of-bounds Warnings
This step is an optimization that is run after the analysis

is complete, i.e. after we can be sure that the result of the
analysis is correct.

We iterate over all GetElementPtr instructions. This in-
struction is called to retrieve the pointer to a particular array
position. We first obtain the length of the array and con-
vert the pointer operand into a CompositeType, before cast-
ing it into an ArrayType and invoking the getNumElements

method.
Given that we have obtained the length of the array ([0, n]

for instance), we must make sure that the index is within
the bounds of the length. Using the map (lattice element)
we have built during the analysis, we find the range of the
array index ([x, y] for instance). If neither ranges overlap
(i.e. y < 0 or n < x), the array is guaranteed to be out of
bounds, and we throw a stern warning at the user.

5.5 Branch Analysis
Our analysis takes into account simple branch statements

where a variable is checked against a value with a known
range. Consider the following C-style pseudo code.

int a = range(10, 90);

int b = range(5, 20);

if (a < b)

...

else

...

We are able to detect that in the true branch a →
(10, 19), b → (11, 20) and in the false branch a →
(10, 90), b → (5, 20). The following flow functions generate
different lattice elements, depending on if the <6 branch is
taken or not.

Fbr true(Y <Z)(in) = in − {Y → ∗} − {Z → ∗}
∪ {Y → (ly, a)

∪ {Z → (b, uz) |Y → (ly, uy) ∈ in

∧ Z → (lz, uz) ∈ in

∧ a = min(uy, uz − 1)

∧ b = max(ly + 1, lz)}

Fbr false(Y <Z)(in) = in − {Y → ∗} − {Z → ∗}
∪ {Y → (a, uy)

∪ {Z → (ly, b) |Y → (ly, uy) ∈ in

∧ Z → (lz, uz) ∈ in

∧ a = max(ly, lz)

∧ b = min(uy, uz)}

5.6 Benchmarks
Our analysis was able to generate a warning for the pro-

gram below.

6Other comparisons can be implemented in a similar way.

int arr[10];

int a = 0;

unsigned long i = 0;

while (i < 100) {

a = a + i;

i = i + 1;

}

return arr[i];

At the end of the while loop, our analysis concludes that
i will be in the range [100,∞), which clearly does not over-
lap with [0, 9] of the array. On the other hand, if we replace
arr[i] with arr[a], the analysis will not produce any warn-
ings. Based on our implementation, we do not have sufficient
information about a; for all we know, a could start from zero
and go all the way to infinity. Thus, a’s range intersects with
the array’s range. The analysis has no definitive evidence to
throw a nasty warning in this case.

5.7 Lessons
Only toward the end of implementing range analysis did

we realize that constant analysis was, in fact, a special case
of range analysis. Effectively, a constant c is equivalent to
a range [c, c]. For coding efficiency, we could have designed
the range analysis first, before making constant analysis a
special case of the range analysis.

6. INTRA-PROCEDURAL POINTER
ANALYSIS

In this section, we present our must-point-to analysis.

6.1 Assumptions
LLVM’s default mem2reg pass already implements the op-

timization for the analysis. If, for instance, a points to b in
the C++ file, then all occurrences of a are automatically
replaced with b in the byte-code. In order to implement our
own must-point-to analysis, we must therefore disable the
mem2reg pass.

The goal of the analysis is to output a mapping from one
memory location, a, to another memory location, b, if a must
point to b.

6.2 Lattice Definition
We define the lattice for the pointer analysis as follows.

x→6y means that x does not point to one thing, but it may
point to multiple things.

(D ,> ,⊥,t,u,v) =

(2{x→y |x,y∈Vars} ,{x→6y |x ∈ Vars} ,∅,∪,∩,⊆)

We define flow functions at the IR level as follows.

Fstore(X,Y)(in) = in − {Y → ∗} ∪ {Y → X}

FX:=load(Y)(in) = in − {X → ∗} ∪ {X → Y }

FDefault(in) = in

7

We argue that by defining the flow functions for store and
load instructions alone, we are able to capture the behaviors
of all four types of pointer manipulations: X = Y, X = &Y, X
= *Y, and *X = Y.

Fmerge(in1, in2) = in1

∪ {X → Y ∈ in2 |X → ∗ /∈ in1}
∪ {X →6y |X → a ∈ in1

∧X → b ∈ in2

∧ a 6= b}

6.3 Implementation of Analysis

Data Structures.
Our lattice element is represented by a map that maps

llvm::Value* to instances of PointsTo, which is a C++
class that stores another llvm::Value* and an is_null flag.

Initialization.
First, we start with a high level view of the analysis. At the

initialization stage, we assign ⊥ to each of the instructions
in the control-flow graph. Internally, we also maintain a map
from variables to variables (as defined in the domain of the
lattice). If a variable a is mapped to another variable b, we
conclude that a points to b. However, if a →6y7, then we
conclude that a points to a value that we cannot determine,
and that its value is incomparable to those of the others in
the lattice. On the other hand, a variable absent from the
map suggests a lack of evidence about this variable. Note
that variables in this map can be either memory locations
or registers in the byte-code. We will later explain how this
difference is resolved.

Worklist algorithm.
Now that the map is initialized, we can start the worklist

algorithm. Our analysis changes the state of the lattice only
upon store and load instructions. Otherwise, the output of
the flow function is exactly the input.

When we are loading X into Y , the mapping from Y to
X is added. Similarly, when the value of X is stored into Y ,
we add Y → X into the map. Any existing keys in the map
will be replaced, as the corresponding variable now points
to a new value.

The maps are intersected when two basic blocks merge.
For example, we may have X → Y in the first basic block,
and X → Z in the second. The result of the merge depends
on Y and Z. If they are the same, the map after the merge
will have X → Y . Otherwise, we require that X →6y, as X
must point to an incomparable value.

This process is repeated until we reach a fixed point. The
worklist algorithm terminates. Our analysis prints out the
contents of the map. Unfortunately, we cannot hand the map
over to the optimization pass yet, as the map contains both
memory locations and temporary registers that LLVM cre-
ates. For example, a memory location may be dereferenced
first before being stored to another value. LLVM would au-
tomatically create a new register to temporarily store the
dereferenced value.

7Represented in the code by a flag is_null.

Ultimately, the goal of the pointer analysis is to output a
mapping of memory locations, which the original program
creates. We should ignore intermediate registers in the anal-
ysis. If, for instance, a → %1 → b (where %1 is a tempo-
rary register, following LLVM’s naming convention), then
our analysis should output a→ b.

Eliminating temporary registers.
Recall that our map maintains relations such as a → b,

where a and b could each be a memory location or a tempo-
rary register. Our objective is to follow this chain of must-
pointers, until we can determine that a memory location
points to another memory location.

We illustrate the problem with the following C++ pro-
gram.

int x = 666;

int* a; int* b;

b = &x; a = b;

In the LLVM intermediate representation, we observe that
b → x, but %0 → b while a → %0. The goal is to eliminate
temporary registers such as %0, such that the analysis would
eventually conclude that both a and b point to x.

To this end, we transform the map into a special pointer
graph8. Each node in the graph is a key in the original map;
thus, a node can be either a memory location (e.g. a) or a
temporary register (e.g. %1). Each node has a type. If we
follow the example above, the x node would have type int,
b would have type int∗, %0 type int, and b type int∗. A
directed edge from node b to node x suggests that there is a
mapping from variable b to variable x, which flow functions
constructed during the worklist algorithm.

We can establish must-point-to relationships by travers-
ing the graph. Suppose we are interested in what x must
point to, such that x is a memory location of type int∗n.
This notation means that the pointer type has n asterisks.
A pointer-pointer is expressed as int∗2.

We recursively follow the outgoing edges from node x,
until we arrive at some special node y, such that:

• y is a memory location, and

• y is of type int∗(n−1).

We can subsequently conclude that y must point to x. If
no such y can be found or if x is encountered along our path,
then y is incomparable, there is insufficient information to
establish must-point-to relationship about y.

For each memory location in the map, we carry out the
graph traversal above. Our analysis outputs all such x →
y pairs, which subsequent passes can potentially leverage
for optimization. For a full example of how we eliminate
registers with the graph, refer to §8.2.

6.4 Benchmarks
We design two benchmark programs to test our analysis.
The first benchmark verifies that our analysis can handle

all possible pointer operations. As shown in §8.2, the C pro-
gram attempts various combinations of pointer operations.
Furthermore, the program creates two integer pointer types:

8We have to traverse this graph to produce the correct out-
put during the printing phase.

8

int∗ and int ∗ ∗. It constantly converts between the two, in
a way that is representative of the difficult corner cases.

Our analysis can handle these situations, because they all
boil down to the load and store instructions at the LLVM
level. The graph-traversal algorithm is able to follow mem-
ory locations and temporary registers with ease. It can also
keep track of various int∗n pointer types, so that we can
easily pinpoint the must-point-to relations between any two
memory locations.

The second benchmark examines how must-point-to rela-
tions are propagated between basic blocks. Shown below is
a snippet of the program:

int y = 4; int* c;

L2: if (y > 0) { c = &y; } else { c = &x; }

int* d = &y;

L4: while (y > 0) { d = &x; d = &y; }

The analysis is able to show that both c must point to 6y
(incomparable), as c points to two different memory loca-
tions at the merge point on L2. Hence, we have insufficient
information on what c must point to. In contrast, the anal-
ysis concludes that d must point to y, since d points to y at
both merged points on L4.

However, our analysis will not work with arrays, where
getElementPtr is used to handle reading. We believe it an
easy task to add support for this new instruction.

6.5 Lessons Learned
Initially, we started designing the analysis with mem2reg

in mind, similar to the two analyses that we had done so
far. This built-in pass offers some undeniable perks, such as
SSA, that would significantly simplify our analysis passes.
In the case of pointer analysis, however, the mem2reg pass
would be too smart—it would do the optimization for us.

Again, consider the following code snippet:

int x = 666;

int* a; int* b;

b = &x; a = b;

The mem2reg pass would simply render our analysis ob-
solete, as it already takes care of constant propagation and
pointer analysis:

%add = add nsw i32 666, 666

%add1 = add nsw i32 %add, 666

If we replaced the initial assignment of x with a random
number generator (i.e. a call instruction), textttmem2reg
would be smart enough to replace all occurrences of 666
with the call instruction. Effectively, mem2reg was replac-
ing available expression for us as well. Therefore, we had to
disable mem2reg.

As SSA disappeared, we could only do join when two
basic blocks merged rather than at Phi nodes.

7. AVAILABLE EXPRESSIONS ANALYSIS
In this section, we present our available expression analy-

sis.

7.1 Overview
We once again enable LLVM’s default mem2reg pass to

provide SSA for non-memory locations and build our design
atop of such assumptions.

The goal of this analysis is to output the expression that
each variable is assigned a value from, which could enable
optimizations such as Common Sub-expression Elimination.
From a high-level, our analysis constructs a mapping of vari-
ables to expressions for which any pair of expressions can be
checked for equivalency. We chose to support three primary
forms of expressions based upon operation formats: unary,
unordered binary, and ordered binary. Respective examples
of such operations would be: bangs/not operators; addition
and multiplication; and subtraction and division.

Our analysis constructs custom expressions composed
of the analyzed LLVM instruction’s operation and the
value(s)/variable(s) passed to it. Equivalency between ex-
pressions is defined via equivalent values (respecting order-
ing as appropriate) with equivalent operations.

SSA guarantees that registers are immutable, so long as
they are not assigned values that derive from a PHI node.
To this extent, expressions can also be set to incomparable
(§3). This is commonly the expression of a PHI node or
any expressions that contain values descendent of such PHI
nodes.

Once the mapping pairs are created from variables to
expressions, any pair with comparable expressions can be
used in succeeding optimization passes. The obvious exam-
ple would pass pairs with equivalent expressions onto a CSE
optimizer, which could replace all dominated occurrences
of such expressions with the variable corresponding to the
dominating pair. This could then be optimized further via
another pass, Copy Propagation.

The rest of the section will focus specifically on Available
Expressions Analysis, leaving optimization passes as future
consumers of our products. To do so, the analysis syntax and
lattice will be formalized, followed by details of our specific
implementation’s design of the requirements, easy-to-follow
benchmarks, and finally lessons and minor obstacles encoun-
tered during implementation.

7.2 Syntax
All variables, like in other passes with mem2reg enabled,

are values stored in an infinite set of registers with uniquely
identifiable names. Allocating of, storing to and loading from
memory locations, despite being representative of variables
in higher level languages, are not so in this analysis. The
register holding the value returned by an allocate or load,
however, is considered a variable like any other register. All
expressions are represented as described in the Overview
(§7.1). The following syntax will be used throughout the
section to describe all variables and expressions:

Var a variable

Vars full set of all variables

Expr∅ a non-existent expression (not yet known)

ExprC a comparable expression

ExprI an incomparable expression

ExprO an ordered expression (discussed below)

ExprU an unordered expression (discussed below)

9

Expr base type for any expression

7.3 Lattice Definition
We define the lattice for available expressions as follows.

(D,>,⊥,t,u,v) =

(2{x→y |x∈Vars∧y∈Exprs}, {x→ ExprI |x ∈ Vars}, ∅,∪,∩,⊆)

We define the flow functions at the IR level as follows.

FX:=Y +Z(in) = in

∪ {X → ExprUC(+, Y, Z) |
Y → ExprI /∈ in ∧ Z → ExprI /∈ in}

∪ {X → ExprI |
Y → ExprI ∈ in ∨ Z → ExprI ∈ in}

FX:=Y−Z(in) = in

∪ {X → ExprOC(−, Y, Z) |
Y → ExprI /∈ in ∧ Z → ExprI /∈ in}

∪ {X → ExprI |
Y → ExprI ∈ in ∨ Z → ExprI ∈ in}

FX:=Φ(Y1,...,Yn)(in) = in − {X → ∗}
∪ {X → c | ∃c ∀i ∈ {1 . . . n} :

Yi → c ∈ in ∨ Yi → Expr∅ ∈ in}
∪ {X → ExprI | ∃i, j ∈ {1 . . . n} :

Yi → e1 ∈ in ∧ Yj → e2 ∈ in

∧ e1 6= e2}

FUnknown(in) = in ∪ {Unknown → ExprI}

We argue that by defining flow functions for the add and
sub instructions alone, we can demonstrate expression equiv-
alence for all binary operations on signed integers: ordered
and unordered. Unfortunately, we did not locate a unary
operator that was logical for signed integers. This is further
discussed in the implementation below.

7.4 Implementation of Analysis

Data Structures.
We represent expressions with an Expression class com-

posed of two llvm::Value* operands and a std::string

representation of the instruction operation. Two Expression

objects are equal if their respective member fields are equal.
Within the Expression class, the operands are al-

ways considered ordered, despite our declaration of
unordered-binary and unary expressions. This was done
for ease of design, and generalized via three static
factory methods: Unary(. . .), BinaryOrdered(. . .) and
BinaryUnordered(. . .). Both Unary and BinaryUnordered

include minimal setup and then delegate actual creation to

BinaryOrdered. BinaryOrdered stores the values in the or-
der provided. Unary passes the NULL value as the second
operand. BinaryUnordered sorts the two operands (via less-
than) and then passes them to BinaryOrdered; this internal
ordering is acceptable so long as external users need not care
about the order they pass the values in. This reordering is
further acceptable since an unordered instruction and and
ordered instruction should never share the same string rep-
resentation, thus mutual exclusivity of instructions remains.

Specifically, the following two LLVM instructions would
equate to different variables (registers) that point to equiv-
alent expressions:

%add2 = add nsw i32 %1, %2

...

%add3 = add nsw i32 %2, %1

Of particular interest regarding these instructions is that
the operands are ordered differently, however the expression
portions are still equivalent, so long as the values are not
modified between the two instructions, as guaranteed via
SSA.

Data Types.
To simplify our implementation, we limited our scope to

data types that are passed to add and sub LLVM instruc-
tions. We can easily extend our implementation to sup-
port floats and other data types by adding additional flow
functions for them. Our mapping of variables is done via
llvm::Value*, thus it can handle any data type permissible
in LLVM IR.

Φ Nodes and SSA.
Φ instructions have a unique flow function in this analy-

sis since we may not yet have seen all the instructions that
define its use. We optimistically ignore any unknown val-
ues, knowing that we will eventually know some information
for them and will therefore revisit this Φ instruction again
via the worklist algorithm. If all the known values map to
equivalent Exprs, we may map an equivalent Expr to the
var storing the Φ instruction result. If any two Exprs are
nonequivalent, we instead map ExprI to this instruction’s
respective var .

SSA allows us our catch-all default flow function to return
the lattice element with the only modification being that
the current instruction is set to a conservative, incomparable
ASS. This is not a lack of precision since assignment can only
happen in a single location, and thus nothing else could ever
override this value. Further, this is neccessary in the event
that this instruction is later used as a Φ operand, in which
case we should not optimistically ignore the value.

7.5 Benchmarks
For Available Expression Analysis we will demonstrate

two simplistic examples that cover: equivalent expressions
over the generalized unordered operation add, and two non-
equivalent expressions that result from a Φ instruction.
Other cases were also tested but omitted for brevity (e.g.
false-positive sub expressions due to ordering).

For brevity in the benchmarks below, we omitted declara-
tions of integers a, b, y, yyy, and bbb which are initialized to
random values if read before assignment. (Also for clarity,
as described in §7.6.) Returns have also been omitted.

10

Unordered Equivalence.

int x = a + b;

if (a > 0) {

y = b + a;

} else {

y = a + b;

}

Although x and the y within the false branch would map
to equivalent expressions in an ordered equivalence check,
the expression mapped to y in the true branch would not.
In this case, a later reading of y would result in a Φ node to
aggregate the two values, and result in y → ExprI .

Our analysis, however, goes further as it will correctly
map all three assignments to equivalent expressions. A Φ
node further down can then precisely aggregate the two y
assignments and result in an ExprC as opposed to ExprI .
The x value could also be aggregated should such a Φ node
exist with operands x and y, or for optimization passes.

False-Positive Equivalence.

int aaa = yyy + bbb;

while (aaa > 0) {

yyy = yyy + bbb;

}

At first glance, it may appear that aaa and yyy map to
equivalent expressions, but that would be incorrect, as yyy
may mutate to other values. Our analysis properly distin-
guishes the difference due to the yyy within the while loop
being a Φ node with two operands: the initial yyy initializa-
tion, and the var storing the result of the addition of the Φ
instruction and bbb. On the first iteration, the Φ node will
only have knowledge about the initialization of yyy . On the
next iteration, it will recognize the inequivalence of the two
operands and thus map ExprI to the var holding the result
of the Φ instruction.

7.6 Lessons Learned
Our analysis does not take care of nested equivalence. For

example, the analysis does not yield a precise, meaningful
result for the following pseudo-IR code:

a = add 66, 77

b = add 77, 66

c = add a, 88

d = add b, 88

As expected, the analysis considers add 66, 77 and add

77, 66 to be the same expression; recall that the ordering
does not matter for unordered instructions like add. How-
ever, a and b are fundamentally different memory locations
(or registers). Thus, add a, 88 and add b, 88 are consid-
ered different expressions even though a and b practically
refer to the same expression. Effectively, our analysis fails
for nested equivalence.

Adding support for this case is trivial. The idea is similar
to our constant folding and propagation: for Available Ex-
pression Analysis, we simply replace the equivalence check
of a and b with the corresponding equivalence check on their
mapped expressions. In this way, a and b are equivalent; so
are c and d. We believe that implementing this feature will

introduce diminishing intellectual merits, and that we shall
leave this to future generations of enthusiastic readers to
implement. Be aware that a naive implementation of this
improvement will make numerous recursive calls each time
nested expressions are checked for equivalence.

We have also learned another lesson that involves mem2reg.
Earlier, we have found that mem2reg introduces SSA, but it
also optimizes away variables, pointers and expressions that
we wished to analyze. For this analysis, mem2reg does the
constant folding and propagation for us. The code above
will not have a or b; mem2reg will have replaced them with
their constant values.

To fool mem2reg, we introduce “constant” values through
call instructions. Where constants should have occurred,
we use the call instructions. The code above would read:

a = call ...

b = call ...

c = add a, b

d = add b, a

For our analysis to work with call, we need one additional
hack. We introduce a flow function for call, where we en-
sure that the assignment is considered a different value at
each line (even to the same function, as we do not have side-
effect free guarantees); otherwise, a and b may inadvertently
become equivalent. To do this, we first observe that every
instruction has a unique memory address. An expression in-
volving call can be identified by the memory address of
the call instruction. In this way, a and b are expressions
with unique identifiers. Essentially, this hack forces a and b
to behave as different constants, while we are able to keep
mem2reg for the benefits of SSA. Equivalently, we could have
used function parameters.

8. APPENDIX

8.1 Branch Analysis Example
In §5.5, we show an example for our branch analysis as

part of the range analysis. Figure 4 shows the the ranges of
the variables graphically.

5 10 20 90

ab

Figure 4: Visualization of the ranges of a and b.

8.2 Eliminating temporary registers
In §6, we describe our must-point-to analysis, where we

eliminate temporary registers that LLVM creates in the
byte-code. These temporary registers prevent us from di-
rectly establishing must-point-to relationships among mem-
ory locations. In this section, we delineate the register-
elimination algorithm using a full example.

Suppose we have the following C code:

int x = 666;

int* a; int* b; int** c; int* d; int** e;

L1: b = &x;

11

666

%7 %3 x %0 %2

%6 %4 b a %9 %1 d %5 %8

c e

int

int*

int**

int*** [h]

Figure 5: Points-to example graph. Note that even though
the C type of x is int, it becomes int∗ when compiled down
to the LLVM intermediate representation.

L2: a = b;

L3: c = &a;

L4: d = *c;

L5: *c = b;

L6: e = c;

L7: *e = *c;

L8: *c = &x;

LLVM translates L1 into the following code:

store i32* %x, i32** %b, align 8

We create an edge from b to x. Similarly, L2 is translated
into the following intermediate representation:

%0 = load i32** %b, align 8

store i32* %0, i32** %a, align 8

We create an edge from %0 to b, and from a to %0. In
this way, we can construct the full must-point-to graph as
shown in Figure 5.

Should the must-point-to relationships change, we update
the edge accordingly. For example, %4 points to c initially,
but it later points to %3 instead. Thus, we mark the edge
from %4 to c as a thin, dashed line to be removed, while the
edge from %4 to %3 is a solid line.

With the complete graph, we can output the result for
further optimization. Suppose we are interested in what e
points to. Using Figure 5, we first trace from d (whose type
is int∗) to %2. Even though %2 has one fewer pointer as-
terisk than d, it is not a memory location. Hence, we keep
traversing the graph, passing through %1, c, a, %0, b, and
ultimately x, which is both a memory location and of type
int. Therefore, d must point to x.

12

