
CSE 231, Project 1 Danny Y. Huang, John Mangan, Matthias Springer 1

Abstract

In this work, we use LLVM passes to profile programs in its Intermediate Representation (IR). To this extent, we
count the number of instructions statically in the IR, as well as the instruction executions at runtime. Additionally,
we analyze the branch bias per function. Through this process, we familiarized ourselves with the LLVM framework
for program analysis, extension, and modification.

1 Collecting Static Instruction Counts

source code
file (.c)

LLVM compiler

clang
 -emit-llvm

LLVM IR
file (.ll, .bc)

LLVM optimizer

opt
 -load CSE231.so
 -countStaticInstructions
 -analyze

statistics

Figure 1: Workflow for collecting instruction counts statically.

Figure 1 shows the compilation and linkage workflow for this part of the project. We provide an LLVM pass that
does not modify the input program but merely outputs program statistics to stdout.

1.1 Basic Idea

In this section, we design an LLVM pass that prints out the number of instructions statically at compile time. This
pass consists of two stages. The first stage traverses all instructions. We keep track of the number of occurrences
for each instruction. We maintain a C++ map to associate instructions with their counter. In the second stage, just
before the pass terminates, we print out the contents of the map. With this high-level information, we next describe
the implementation details.

1.2 Implementation

We define our pass CountStaticInstructions as a subclass of ModulePass. Within our pass, we construct a map to store
the instruction counts. As our pass class might be instantiated multiple times, we want to ensure only one map
instance is created by making it static.

The first stage goes through every instruction. To this end, we override the runOnModule method provided by
ModulePass. Within this method, we iterate through every function, every basic block and every instruction using their
respective iterators. Along with the method Instruction::getOpcodeName, we record the number of occurrences for each
instruction using the map.

The second stage prints out the statistics we recorded by overriding the print method provided by ModulePass.
This method is called whenever the pass is complete and the -analyze flag is passed to the LLVM optimizer. Note
that the optimizer does not modify the program here.

2 Collecting Dynamic Instruction Counts

2.1 Basic Idea

At a high level, this pass obtains dynamic instruction counts by inserting an instrumentation module into the program
at compile time. At the end of every basic block, the LLVM pass inserts calls to our instrumentation module, which is
subsequently linked to the original executable. These calls record the executed instructions within the current basic
block. In this way, our statistics-collection code in the module is executed on the fly at runtime. When the program
is run, it prints out the dynamic instruction counts just before the main function terminates.

2.2 Implementation

The structure of the pass is similar to the static one. We go through every module, every function and every basic
block. For each basic block, we statically create a C++ map, which keeps track of the instructions in the basic block
as well as their counts. Next, we find the terminator of this block; an example would be a ret or jump instruction.

CSE 231, Project 1 Danny Y. Huang, John Mangan, Matthias Springer 2

source code
file (.c)

LLVM compiler

clang
 -emit-llvm

LLVM IR
file (.ll, .bc)

LLVM optimizer

opt
 -load CSE231.so
 -countDynamicInstructions

Modified LLVM IR
with calls to
instrumentation module

Instrumentation Module
source code file (.cpp)

Instrumentation Module
LLVM IR

LLVM compiler clang
 -emit-llvm

Linked Instr. Module
and program LLVM IR

LLVM linker llvm-link

Platform-specific
Assembly Language
Object file (.o)

LLVM static
compiler

llc
 -filetype=obj

Instrumented
Platform-specific
Executable

GCC

g++

Figure 2: Compilation and linkage workflow for Section 2 and Section 3.

Just before the terminator instruction, the pass makes a call to the statistics-collection code, supplying the opcode
(string) - count (integer) pair as arguments1. We could have invoked the external statistics-collection code upon every
instruction, but this would have degraded the performance for large basic blocks that are called frequently. Given
that entering a basic block implies that every instruction within it must be executed, we can significantly reduce the
number of calls to the external statistics-collection code. This is done by aggregating the instruction counts per basic
block at compile time, and recording them once before exiting a basic block2.

Name Mangling The LLVM pass is calling a function in a linked compilation unit whose name was mangled at com-
pile time. We have to call the C functions void handleOpcode(char* opcode, int count) and void printOpcodeStatistics

(), and, therefore, in the instrumented program, we call functions with the name _Z12handleInstructionPci and
_Z21printOpcodeStatisticsv, respectively3.

Calling the Instrumentation Module Invoking the linked statistics-collection function from the LLVM pass is
straightforward. We simply call it by its mangled name, using the Module’s getOrInsertFunction method, followed by
IRBuilder’s CreateCall method. The statistics-collection function takes as arguments the instruction as a C-string and
the number of its occurrences within a basic block as an integer. This function stores this information as a key-value
pair into a static map in the instrumentation module file. As such, we can keep track of the dynamic instruction
counts in this linked statistics-collection function. While our design choice of directly calling the function by its
mangled name does couple the module pass to our external C++ file (instrumentation module), we still consider this
a modular design since the two are conceptually coupled anyway, such that neither one is useful without the other
one.

Printing Statistics Finally, we need to print out the statistics from the map in the external C++ file. It turns
out to be another challenge. In the static pass, we simply override the pass’ print function to display the statistics.
In contrast, this is not feasible in the dynamic case, since the static pass will run and terminate at compile time and
the dynamic instruction count can vary depending on the algorithm and its input (e.g., GCD with differing input
values). We have to print the statistics just before the main function exits.

To determine the main functions termination point, we do the following for every instruction we see at compile
time: we check if the instruction’s parent function has the name main. If so, we further check if the instruction is a
return instruction. If both of these conditions are satisfied, our LLVM pass will insert a call to our print-statistics
function in the instruction module. If the main function has multiple return instructions, we insert the call at every
one of them. In this way, the print-statistics function is guaranteed to be invoked just before the executable exits,

1This cannot be done after the terminator instruction, as LLVM would complain: every basic block should end with a terminator
instruction. Besides, code after a terminator instruction could be unreachable.

2Note that the instruction counts inside a basic block is known at compile time. However, the number of executions of a basic block is
not.

3We discovered the function names by examining the LLVM IR code generated from the instruction module.

CSE 231, Project 1 Danny Y. Huang, John Mangan, Matthias Springer 3

assuming a standard termination (as opposed to exceptions such as seg-faults). A concern worth mentioning, albeit
trivial to implement correctly, is that we must be sure to insert the call to record the dynamic count (including the
ret opcode) prior to inserting the call to print the acquired statistics.

3 Profiling Branch Bias

3.1 Basic Idea

Profiling branch bias follows a similar structure as in the previous part. Again, we have an LLVM module, along with
an instrumentation module to be linked to. The instrumentation module contains a function that gathers statistics
of branches, as well as a function that prints out these statistics. At a high level, the LLVM module will insert calls
to both of these functions, so that they can profile branch bias in run-time.

3.2 Implementation

The problem is inserting calls in the original executable. Our goal is to find all conditional branches; for each of
them, we keep track of how often a branch condition is evaluated to either true or false. To this end, we iterate
through every module, every function, every basic block and every instruction. For each instruction, we determine
if it is a conditional branch. For each conditional branch, we retrieve the condition (could be an instruction) via
IRBuilder’s getCondition method. We then create a new boolean value via a not-equals comparison between the
condition value and a zero value (equivalent to false in C++). We then insert a call to our branch-profile function
in the instruction module, passing in the boolean value. Additionally, we set the branch condition to this evaluated
value using IRBuilder’s setCondition method, in order to avoid any behavioral changes based on stateful expression
evaluations. For instance, if the branch condition is x++ % 2, we only want to evaluate it once.

branch <condition> <then-label> <else-label>

(a) Original IR.

Value v = <condition>

bool b = (v != 0)

profile_branch(<function-name>, b)

branch b <then-label> <else-label>

(b) Modified IR.

Figure 3: Pseudocode representation of IR modification to profile branch bias.

Our branch-profile function takes two arguments: the function’s mangled name, and the boolean value representing
the evaluated branch condition. The function maintains two static maps for the total number of executed branch
instructions and how many of their conditions evalutated to true (per function), so that we can print out the statistics
about the branches at the end of the program.

Similar to the previous part, we insert calls to the print-statistics function at every return instruction in the main
function. This guarantees that the statistics are displayed just before the main function exits.

4 Example

In this section, we present the statistics gathered for the gcd benchmark. We found this program particularly
interesting because it is conceptually simple while including the complexity of recursion.

In the static case, the ret instruction appears twice because gcd has two functions (main, gcd). In the dynamic case
for input gcd(72,32), the ret instruction is executed four times: thrice from gcd and once from main. This program
has a single branch instruction which resides in the function gcd, implying it has reached the base case if true and
otherwise returning the result of a recursive call. Since we have three dynamic ret executions from the function
gcd, the final one must be the base case and the other two originate from the recursive calls. Therefore, the branch
condition was true one out of three times, which is consistent with our observations.

