
CSE 203A Project Matthias Springer, A99500782 1

Abstract

In this work, we discuss the results and consequences of Harald Räcke’s paper Optimal Hierarchical
Decompositions for Congestion Minimization in Networks. We present how decomposition trees can be
used to facilitate different kinds of graph problems, and give a short overview over previous developments
in this area and in the area of Oblivious Routing, which was identified by the author as a key problem
and improved in a series of publications involving decomposition trees.

1 Decomposition Trees for Oblivious Routing

Decomposition trees are a special form a graph transformations and used to develop approximation algorithms.
The idea is to generate a decomposition tree for the graph, to run the algorithm on the decomposition tree
(faster than on the original graph), and to convert the result back to the original graph, instead of running
an algorithm on the original graph.

1.1 Oblivious Routing

Routing network traffic in flow networks is a crucial problem in computer science. A great variety of algorithms
exist that focus on different aspects, such as reducing the length of the path or reducing the latency, or reducing
the congestion of the flow network. The author of the paper claims that his results are useful in particular in
the latter case [7].

The congestion of a network flow graph is defined as the maximum congestion of any edge, where the
congestion of an edge is defined as the flow imposed on an edge, divided by the capacity of the edge. I.e., the
congestion of an edge is the occupancy rate r of the edge. For a routing network, 0 ≤ r ≤ 1 is enforced and
an r > 1 implies that an edge is overloaded.

The key idea of oblivious routing is that the route does not depend on the current traffic in the network,
i.e. every routing decision is made independently. This simiplifies the involved algorithms significantly and
allows making decisions locally, without having knowledge about the complete system. A centralized O(log n)-
approximation was already presented by Aspnes in 1993 [1].

1.2 Oblivious Routing with Decomposition Trees

The author presents an algorithm that approximates the optimal congestion inside a flow network, i.e. a
multicommodity flow that minimizes the congestion of the graph, by a factor of O(log n). The following list
gives an outline of the steps involved in this procedure. We will discuss these in more detail in the remainder
of this work.

1. Generate a number of decomposition graphs Ti of G, together with scaling factors λi (convex combina-
tions).

2. Compute an optimal flow in every decomposition tree Ti with one commodity per Ti (easy).

3. Bound the quality of the convex combination of Tis induced by λi.

4. Bound the quality of the solution when it is converted from the decomposition tree back to the original
graph.

CSE 203A Project Matthias Springer, A99500782 2

1.3 Previous Work

The author pursued a lot of reserach in the area of routing problems. In 2002, he published a paper in which
he proved non-constructively that an O(log3 n)-approximation for minimizing congestion in flow networks
(therefore resulting in an oblibious routing algorithm) exists using a decomposition tree [8]. This result was
remarkable in a sense that, even though better non-oblivious routing algorithms existed at that time1, he
showed that no information about the distribution of the current load inside the network is necessary and
a slightly worse approximaton can still be achieved. In 2003, Bienkowski et al. presented an O(log4 n)-
approximation, together with a simpler proof for the existence of an O(log3 n) algorithm [2]. In the same
year, Azar et al. presented an efficent O(log3 n)-approximation whose existence Räcke proved. Also in 2003,
Harrelson et al. presented an O(log2 n log log n)-approximation, which was the best known approximation
until Räcke published the paper discussed in this work in 2008 [6].

Motivated by results for a better oblivious routing algorithm in directed graphs, Hajiaghayi et al. analyzed
possible improvements for the undirected case. However, it turned out that these results could not advance
the undirected case any further, and they proved a tighter lower bound of Ω(logn

log logn
) instead [4].

2 Decomposition Trees

Figure 1: An example for a decomposition tree.

2.1 Notation and Definitions

We are given a graph G = (V,E) that we want to transform into a tree graph T that is similar to G. Different
ways for decomposing graphs have been proposed, among them distance-based decompositions and cut-based
decompositions. We will focus on the latter in this work. In a decomposition tree, adjacent vertices are
grouped in trees. These trees (or remaining single vertices) can again be grouped into trees, until, eventually,
a single root is left over. For a decomposition tree T = (Vt, Et) for the graph G, we introduce the following
notation and definitions.

• mV : Vt → V is a function that maps nodes from T to vertices in G, especially leaf nodes in T to graph
vertices V .

• m′V : V → Vt is the mV ’s inverse function.

• mE : Et → E∗ maps an edge et = (ut, vt) in T to a path Puv (a set of edges) between u = mV (ut) and
v = mV (vt) in G.

1In 1993, Aspnes et al. [1] presented a non-oblivious online routing algorithm which is an O(log n)-approximation.

CSE 203A Project Matthias Springer, A99500782 3

• m′E : E → E∗t maps an edge in G to the shortest path connecting the corresponding nodes in T , i.e. the
shortest path between m′V (u) and m′V (u) for an edge e = (u, v) ∈ E.

2.2 The Multicommodity Network Flow Problem

A multicommodity flow problem is a network flow problem with multiple flows in the same network. Formally,
we are given an undirected graph G = (V,E) and a capacity function c : E → R+

0 that assigns every edge a
maximum flow. For every unordered pair {u, v} (commodity), we are looking for a flow in the graph network
starting at the source node u and flowing into the sink node v, subject to flow conservation and capacity
constraints. We are also given a demand value d per commodity, i.e. the amount of flow we wish to flow from
u To v.

We can map a flow fT in T back to a flow m(fT) in G using the edge mapping function mE. If an edge
et has flow f iT (et) for commodity i, then an edge e ∈ E has flow

∑
et∈Et:e∈mE(et)

f iT (et). For mapping a flow

from G to T , we use the function m′(f).

2.3 Approximating bottlenecks in a graph

In a graph, a bottleneck is a set of edges that limits the flow, i.e. if we increase the capacity of all these
edges, we can increase the network flow. By approximating the bottlenecks efficiently, we can approximate
multicommodity flows efficently, and therefore solve problems such as oblivious routing. In this section, we
show how to approximate bottlenecks with decomposition graphs and prove the quality of this method. In a
later section, we will discuss how to generate the decomposition graphs that we use in this section.

Flow Network We are given a graph G = (V,E) with a capacity function c(u, v) that limits the flow on
the edge (u, v). We are also given a decomposition tree T for G with a capacity function cT (ut, vt) that is
defined as follows.

cT (ut, vt) =
∑

u∈Vut ,v∈Vvt

c(u, v)

We can think of the edge (ut, vt) as a cut. T is a tree, so removing an edge partitions the graph into two
sets Vut and Vvt .

Congestion in G and T The congestion of a graph is defined as the maximum congestion of an edge. The
congestion of an edge is flow divided by capacity.

Lemma 1 For a multicommodity flow f in G with congestion CG, T has a congestion of CT ≤ CG when
mapping f to T .

Let et = (ut, vt) be an edge in T that reaches the maximum congestion CT . Note, that et defines a cut,
i.e. it partitions T into Vut and Vvt and all flow between these two vertex sets has to go through et. Now
consider a cut between the edges mV (Vut), mV (Vvt) in G. The flow crossing the cut in G is greater or equal to
the flow crossing the edge et. According to the previous definition, the cut capacity in G equals c(et). Note,
that congestion is defined as flow divided by capacity. If fT is the flow in T and fG is the flow in G, then the
following holds true since

∑
p∈cutG fG(p) ≥ fT (et).

CSE 203A Project Matthias Springer, A99500782 4

∃ep ∈ cutG :
fT (et)

cT (et)
≤ fG(ep)

c(ep)

Therefore, one of the cut edges in G must be above the average and CG ≥ CT .

Embedding of T in G We define the load of an edge e induced by T as follows.

loadT (e) =
∑

et∈ET :e∈mE(et)

c(et)

The relative load of an edge e induced by T is defined as follows.

rloadT (e) =
loadT (e)

c(e)

Convex Combination of Decomposition Trees This step in the analysis is crucial. We are now given
a convex combination of decomposition trees Ti. The following lemma bounds the congestion of the flow in
the convex combination of Tis when it is converted back to G.

Lemma 2 Let {(Ti, λi)} be a convex combination of decomposition trees, i.e. ∀i : λi ≥ 0,
∑

i λi = 1, and
the maximum expected relative load be β, i.e. ∀e ∈ E :

∑
i λi · rloadTi(e) ≤ β. Furthermore, in every Ti,

there is a multicommodity flow fi with congestion 1 in Ti. Then, the combined and scaled multicommodity
flow

∑
i λi ·mTi(fi) has congestion less or equal to β when mapped back to G.

For a specific Ti, we never send more flow across an edge than its capacity, since the congestion is 1.
Therefore, for an edge e ∈ E, fG(e) ≤ λi · loadTi(e). If we consider all Ti, then fG(e) ≤

∑
i λi · loadTi(e),

resulting in a congestion of
∑

i λi·loadTi
(e)

c(e)
=

∑
i λi · rloadTi(e). Since, by definition, this value is less or equal to

β for every edge, the congestion in G is less or equal to β.

Approximating the optimal congestion Let G be a flow network graph with optimal congestion Copt(G).
Given a good convex combination of decomposition trees that satisfies the requirements in Lemma 2, we can
compute the flow in every Ti and map the flow back to G. According to Lemma 2, the congestion in G is less
or equal to βmaxiCopt(Ti), which is, according to Lemma 1, less or equal to β · Copt(G).

2.4 Generating a Convex Combination of Decomposition Graphs

In this section, we give a brief summary of how to generate good convex combination of decomposition graphs
that satisfy the requirements of Lemma 2 with β = O(log n). We can formulate this problem as follows. Find
λi and Ti (a point in a polyhedron), such that the following inequalities are satisfied.

∀e ∈ E :
∑
i

λi · rloadTi(e) ≤ β

∑
i

λi ≥ 1

∀i : λi ≥ 0

CSE 203A Project Matthias Springer, A99500782 5

This is equivalent to showing that for β = O(log n) the polyhedron is non-empty. We can reformulate the
problem as follows. Let us define a matrix M .

M =

rloadT1(e1) rloadT2(e1) · · ·
rloadT1(e2) rloadT2(e2) · · ·

...
...

. . .


Then, the first inequality can be written as follows.

M · ~λ ≤ β ·~1
Instead of comparing every element of the vector, we can use the max function.

max(M · ~λ) ≤ β

The author now replaces this inequality by a stronger one that implies the original one, by defining lmax (~x) =
ln(

∑
e e

xe) ≥ maxe xe.

lmax (M · ~λ) ≤ β

We now examine the partial derivates of lmax by an element of the vector xe and by λi.

partial ′e(~x) =
∂lmax (~x)

∂xe
=

exe∑
e e

xe

partial i(~λ) =
∂lmax (M · ~λ)

∂λi
=

∑
e

rloadTi(e) · partial ′e(M · ~λ)

These partial derivates are the basis for an iterative algorithm. We can estimate the change of lmax (~x) when
adding ~ε, using the partial derivates, according to the following lemma that was shown by Young.

Lemma 3 For all ~x,~e ≥ 0, 0 ≤ εe ≤ 1, the following holds true. lmax (~x+ ~ε) ≤ 2 ·
∑

e εe · partial ′e(~x).

Computing a Convex Combination The author shows that for a Ti with partial i(~λ) ≤ β, increasing a

variable λi by δi = 1
li

, where li = maxe rloadTi(e), increases
∑

i λi by δi, but lmax (M · ~λ) only by 2 · δi · β.

Note, that we want lmax (M · ~λ) to be as small as possible, while
∑

i λi = 1, since it is a convex combination.
This gives rise to the following iterative algorithm for computing a convex combination.

∀i : λi = 0
while

∑
i λi < 1 do

Ti = tree with partial i(~λ) ≤ β
li = maxe rloadTi(e)
δi = min{li, 1−

∑
i λi}

λi = λi + δi
end

Figure 2: Algorithm for generating a convex combination of decomposition trees.

The author shows, that a Ti with partial i(~λ) = O(log n) can be computed efficiently by solving the Minimum
Communication Cost Tree Problem. He also shows that the algorithm terminates in O(|E| · log n) steps.

CSE 203A Project Matthias Springer, A99500782 6

2.5 Applications

The author shows that the idea presented in his paper can be applied to various graph problems and improves
the best solution that was known at that point for some problems.

Oblivious Routing Harrelson et al. presented an algorithm for Oblivious Routing with an approximation
of O(log2 n log log n) [5]. With the method shown in the author’s paper, an O(log n)-approximation can be
achieved.

Minimum Bisection In the Minimum Bisection Problem, we are given a graph G = (V,E) and want
to partition the vertex set into two equally-sized sets, such that cut capacity is minimized. An O(log n)-
approximation can be achieved, which improves the best previously known O(log1.5 n)-approximation by
Feige et al. [3].

3 Future Work

The O(log n)-approximation is asymptotically optimal, so we cannot get a better approximation algorithm.

References

[1] James Aspnes, Yossi Azar, Amos Fiat, Serge Plotkin, and Orli Waarts. On-line load balancing with
applications to machine scheduling and virtual circuit routing. In Proceedings of the Twenty-fifth Annual
ACM Symposium on Theory of Computing, STOC ’93, pages 623–631, New York, NY, USA, 1993. ACM.

[2] Marcin Bienkowski, Miroslaw Korzeniowski, and Harald Räcke. A practical algorithm for constructing
oblivious routing schemes. In Proceedings of the Fifteenth Annual ACM Symposium on Parallel Algorithms
and Architectures, SPAA ’03, pages 24–33, New York, NY, USA, 2003. ACM.

[3] Uriel Feige and Robert Krauthgamer. A polylogarithmic approximation of the minimum bisection. SIAM
J. Comput., 31(4):1090–1118, April 2002.

[4] Mohammad T. Hajiaghayi, Robert D. Kleinberg, Tom Leighton, and Harald Räcke. New lower bounds for
oblivious routing in undirected graphs. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium
on Discrete Algorithm, SODA ’06, pages 918–927, New York, NY, USA, 2006. ACM.

[5] Chris Harrelson, Kirsten Hildrum, and Satish Rao. A polynomial-time tree decomposition to minimize
congestion. In Proceedings of the Fifteenth Annual ACM Symposium on Parallel Algorithms and Archi-
tectures, SPAA ’03, pages 34–43, New York, NY, USA, 2003. ACM.

[6] Harald Räcke. Optimal hierarchical decompositions for congestion minimization in networks. In Proceed-
ings of the Fortieth Annual ACM Symposium on Theory of Computing, STOC ’08, pages 255–264, New
York, NY, USA, 2008. ACM.

[7] Harald Räcke. Survey on oblivious routing strategies. In Proceedings of the 5th Conference on Com-
putability in Europe: Mathematical Theory and Computational Practice, CiE ’09, pages 419–429, Berlin,
Heidelberg, 2009. Springer-Verlag.

[8] Harald Rcke. Minimizing congestion in general networks. In IN PROCEEDINGS OF THE 43RD IEEE
SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), pages 43–52, 2002.

