
CSE 202 Homework 3 Matthias Springer, A99500782 1

Problem 3

Subproblem a

Basic Idea

• We create a flow network for the table. The table entries can be rounded to integers by satisfying all
column and row constraints iff the max flow of the graph is the sum of all column/row sums.

• We can reconstruct the rounding by evaluating the flow values.

• For every cell entry, the value can either be 0 or 1 (edges with capacity 1). A flow value of 1 means
that the cell entry is 1.

• Edges with flow ri and ci ensure that the column/row sums are not exceeded. If the max flow value
is smaller than the sum of all column/row sums, then at least one row/column sum is too small.

CSE 202 Homework 3 Matthias Springer, A99500782 2

Graph Construction

• Create a source s and a sink t.

• Create a vertex vri for every row i and a vertex vci for every column i.

• Create edges (s, vri) with capacities ri where ri is the row sum of row i.

• Create edges (vci , t) with capacities ci where ci is the column sum of column i.

• Create a vertex ca,b for every cell where a is the cell’s row and b is the cell’s column.

• Create edges (vri , ci,b) for every b and every row i with capacity 1.

• Create edges (ca,i, vci) for every a and every column i with capacity ∞.

Algorithm

• Build the flow graph G for the input table.

• Run Ford-Fulkerson on G to determine the max flow.

• Extract the solution from the max flow1.

– Round ca,b up (use 1) if f((vra , ca,b)) = 1.

– Round ca,b down (use 0) if f((vra , ca,b)) = 0.

• Output the rounded values ca,b.

Proof

• Integrality constraints: since all capacity values are integers, Ford-Fulkerson assigns only integer
flow values. Therefore, for every combination of a and b, ca,b is always an integer. Having calculated
the max flow, we can always extract the information whether to round a number up or down.

• Rounding constraints: since all edges (vri , ci,b) have a capacity of 1 and integrality is ensured, we
can conclude that the max flow assigns only values 0 or 1 to each cell. Therefore, we can be sure
that this algorithm does only round numbers up or down but not assign other numbers to cells2.

• Row constraints: for every row i, all ci,b (for all b) are connected to the source via edges (s, vri),
with a capacity of the respective row sum. Therefore, we can be sure that the sum of all rounded
cells in row i cannot exceed ri. We also know that there is no possible rounding, if the max flow is
smaller than

∑
i ri. In that case, at least one of the edges (s, vri) has a remaining capacity that was

not used by the max flow. Therefore, the row sum is too small.

• Column constraints: we can make the same argument for column sums, by examining the edges
(vci , t).

• Summary: the algorithm finds a valid rounding if there exists one, because all cell numbers are
either rounded to 0 or 1, row and column constraints are ensured and we can extract the rounding
from the max flow/residual graph after running the Ford-Fulkerson algorithm.

1f(e) is the flow value for e in the maximum flow.
2Assumption: the problem description says that all cell values are between 0 and 1. We assume, that the bounds are

excluding, i.e. there is no cell with a value of 0 or 1. If this is allowed, we can adapt the algorithm to cope with this situation
(see later subsection).

CSE 202 Homework 3 Matthias Springer, A99500782 3

Runtime

• Building the graph can be done in O(n), where n is the number of cells in the table, because we have
to add n vertices in the middle, 2n edges connecting there vertices, and 2

√
n vertices for row/column

sums3 together with the same number of edges connecting these vertices with the source and the
sink.

• The Edmont-Karp algorithm, a variation of the ford fulkerson algorithm, can find the max flow in
O(V E2), where V is the number of vertices and E is the number of edges in the graph. In our case,
V = O(n) and E = O(n) (see previous argument), therefore the runtime is O(n3).

• For extracting the solution, we need to examine n edges.

• The overall runtime of the algorithm is O(n3).

Variation: Inclusive lower/upper bound

The algorithm can be modified to support values of 0 and 1 inside the table. Instead of showing the
exact changes necessary here, take a look at subproblem b, which is a more general problem and supports
inclusive lower/upper bounds, i.e. integers as cell values.

3We assume that the number of rows and columns is equal. Even if this is not the case, this number can never exceed n.

CSE 202 Homework 3 Matthias Springer, A99500782 4

Subproblem b

Basic Idea

• We use a modified version of max flow that supports lower bounds on the flow values, in addition to
capacity constraints. We will show how this can be reduced to the original max flow problem.

• The graph is similar to subproblem a, but instead of putting a capacity constraint of 1 on all edges
(vri , ci,b), we use a lower bound of boi,bc and an upper bound (capacity constraint) of doi,be, where oi,b
is the original value of the cell (i, b) in the table.

• We force the connecting edges of the source and the sink to be the row/column sums by putting the
same lower and upper bound of ri or ci respectively on the edge flow.

• The problem is solvable, if there is a flow that satisfies all constraints. Note, that the notion of a
max flow does not make sense here, because all of s’s outgoing edges are forced to be a specific value.

Graph Construction

• Build the graph exactly as in subproblem a but with the following modifications.

• For every edge (vri , ci,b), use boi,bc4 as a lower bound and doi,be as an upper bound.

4In the graph illustration, we just wrote 00 instead if o0,0.

CSE 202 Homework 3 Matthias Springer, A99500782 5

• For every edge (s, vri), use ri as a lower and as an upper bound.

• For every edge (vci , t), use ci as a lower and as an upper bound.

Algorithm

We assume at this point that we have an algorithm that can solve the flow problem5, i.e. assign flow values
to all edges, such that all constraints are satisfied. We are not looking for a max flow here, but only some
assignment, that satisfies flow conservation, capacity constraints and minimum flow constraints.

• Build the flow graph G for the input table.

• Assign flow values to the graph, such that all constraints are satisfied, using the algorithm described
in the next subsections.

• Extract the solution from the flow values.

– Round ca,b up if f((vra , ca,b)) = doa,be.
– Round ca,b down if f((vra , ca,b)) = boa,bc.

• Output the rounded values ca,b.

Proof

• The proof is similar to subproblem a’s proof.

• Integrality constraints: see subproblem a.

• Rounding constraints: similarly to subproblem a, we assign only the values boa,bc or doa,be, because
these are the lower/upper bounds, their difference is at most 1 and we already showed integrality.
Note, that this version of the algorithm allows values in the table to be integers (in contrast to the
algorithm shown in subproblem a). Therefore, we can use this algorithm to solve subproblem a where
the lower/upper bounds are inclusive, i.e. 0 and 1 are allowed as table cell values.

• Row constraints: we enforce that the sum of the cells per row is the row sum for that row.
Therefore, we do not have to calculate the flow value of the graph. For a single row it is sufficient
to check, whether the upper/lower bounds are satisfied. These constraints must be satisfied, because
this is ensured by the algorithm that we ran in the second step.

• Column constraints: the same argument can be made for column constraints.

Reduction to Max-Flow

The following graph shows how to reduce the previous graph with lower bounds to the classical max flow
problem (for a smaller example).

5How this actually works is shown in one of the next subsections.

CSE 202 Homework 3 Matthias Springer, A99500782 6

• For every edge (vra , ca,b) with a lower bound of l and an upper bound of r, remove l from every edge
on every s-t path that uses this edge. Note, that there is only one that path. The lower bound is
now 0, thus we removed a lower bound.

• The resulting graph still has edges (s, vra) and (vcb , t) that enforce a specific value (by using the same
upper and lower bound). We remove the lower bound.

• If and only if the resulting graph has a max flow of
∑

i ri −
∑

a,bboa,bc, then the problem is solvable.
By subtracting the lower bound from every path, we could still satisfy the constraints in the original
graph by just adding the lower bound to every edge on this path. When we achieve the stated max
flow value, then all of s’s outgoing edges and all of t’s incoming edges have a residual (forward)
capacity of 0, i.e. there is no capacity left. Therefore, after adding the subtracted values again, we
would flow the row/column sums using these edges. This is necessary for a valid solution.

• This is how we construct the original flow values for edges (vra , ca,b): if flow in the new graph is
0, then we flow the lower bound. If the flow is 1, then we flow the upper bound. Note, that the
difference between upper and lower bound is at most 1.

Runtime

The runtime of this problem is the runtime of problem a plus the runtime required for transforming the
graph. Changing the edge capacities/lower bounds can be done in O(E), where E is the number of edges.
From the argument in subproblem a we know that there are O(n) edges. Therefore, the overall runtime is
still O(n3).

CSE 202 Homework 3 Matthias Springer, A99500782 7

Subproblem c

Note, that subproblem a is just a special case of subproblem b. Therefore, if we prove the assumption for
subproblem b, we have automatically proven it for subproblem a.

We prove that the max flow/min cut in the modified graph without lower bounds is always
∑

i ri −∑
a,bboa,bc. In that case, there is always a valid solution for the graphs with lower bounds (see argumentation

in subproblem b). Therefore, we can always round the numbers, such that the constraints are satisfied.

• We claim that C = (A,B), A = {s}, B = V − A is a min cut.

• If we add one of the vertices vra , then the cut capacity can only become bigger (or stay the same).
We can prove this by examining the change of the cut capacity: (

∑
idoa,ie−boa,ic)−(ra−

∑
iboa,ic) =∑

i(doa,ie)− ra. We know that this term must be positive, because by definition ra =
∑

i oa,i and the
ceiled value is always bigger than or equal to the value.

• If we add another vertex ca,b in addition, we also have to add the vertex vcb , because the connecting
edge has infinite capacity.

• If we additionally add another vertex vcb , we can not compensate this. We can prove this by examining
the total change of adding both vertices: cb −

∑
iboi,bc +

∑
i 6=b(doa,ie − boa,ic)− (ra +

∑
iboa,ic) ≥ 0

(expand ra and cb similarly to previous part).

• Therefore, we have no way of achieving a smaller minimum cut. Note, that the cut C = (A,B) with
B = {t}, A = V −B has the same minimum cut value.

Problem 5

Basic Idea

CSE 202 Homework 3 Matthias Springer, A99500782 8

• We generate a flow graph as illustrated in the example above.

• The middle part of the graph (everything without s and t) is the original graph, but with directed
edges. The capacities for these edges are 16.

• We connect the left vertex set with the source and give each each edge (s, Ai) a capacity of di, where
di is the degree of Ai in the spanning subgraph. We do the same for the right vertex set and the sink.

• There exists such a spanning subgraph, if and only if the max flow of this graph is the sum of all dj,
where j is the set of vertices on the left side.

• We can extract the spanning subgraph by taking only the edges with a flow of 1.

• We can partition the bipartite graph into two vertex sets with DFS. Note, that a graph is bipartite
if and only if its chromatic number is 2. Therefore, the DFS can just assign the opposite color when
exploring a new vertex.

Graph Construction

• Add a source s and a sink t.

• Let V = (V1, V2) be the original vertex set.

• Add all vertices V .

• Add an edge (a, b) for all a ∈ V1, b ∈ V2, {a, b} ∈ E with capacity 1.

• For all a ∈ V1, add an edge (s, a) with capacity da. For all b ∈ V2, add an edge (b, t) with capacity db.

Necessary Conditions

• G = (V,E) is bipartite, therefore we can write V = (V1, V2). |V1| = |V2| is a necessary condition.
Otherwise, we would require V1 to have more outgoing edges than V2 has incoming edges or V2 to
have more incoming edges than V1 has outgoing edges.

Algorithm

• Split V in sets V1 and V2 with V1∩V2 = ∅ and ∀a ∈ V1, b ∈ V2 : {a, b} 6∈ E using DFS: when exploring
a new node, assign the node the opposite color of the current node (there are only two colors). The
initial node can be an arbitrary color. Split V into V1 and V2 according to their colors.

• Build the flow network.

• Calculate the max flow with Ford-Fulkerson algorithm.

• If the max flow is smaller than
∑

i∈V1
di, then output no solution.

• Else, output all edges (a, b) with a 6= s and b 6= t and f((a, b)) = 1.

6note, that we can arrange the vertices in such a way because the graph is bipartite.

CSE 202 Homework 3 Matthias Springer, A99500782 9

Proof

• Integrality constraints: Ford-Fulkerson generates a max flow with integer flow values, because all
capacity values are integers. Therefore, the flow values for edges (a, b) with a ∈ V1 and b ∈ V2 are 0
or 1 and we can extract the solution from that.

• Degree constraints: For every vertex a ∈ V1 in the left vertex set, we cannot use more than da
outgoing edges, because the capacity of the connecting edge (s, a) is da. Similarly, for every vertex
b ∈ V2, we cannot use more than db incoming edges. When the max flow is

∑
a∈V1

da =
∑

b∈V2
db, we

can be sure that we used di edges for every vertex Vi (because of flow conversation).

• We can always partition V into V1 and V2, because a graph is bipartite if and only if it is two-colorable.

Runtime

• Generating sets V1 and V2 with DFS: O(|V |+ |E|).

• Build the flow network. This involves adding |V | connecting edges and setting capacity constraints
for |E| edges. Therefore, the runtime is bounded by O(|V |+ |E|)

• Generating the max flow with the Edmonds-Karp algorithm in O(|V ||E|2)

• Extracting the solution by examining O(|E|) edges.

• The overall runtime is O(max{|V |+ |E|, |V ||E|2}).

CSE 202 Homework 3 Matthias Springer, A99500782 10

Problem 1

Basic Idea

• We precalucate a set of time points ti where something changes, i.e. where a processor becomes
available, a processor vanishes or a job becomes available.

• At every ti, we redistribute a subset of all available jobs onto the available processors.

• For every time interval ti−1 to ti, we precalculate the processor capacity ci−1,i, i.e. the processing
power of all available processors. For instance, if two processors are available in the interval ti−1 to
ti with length [4.5; 6), then the processor capacity for this interval is ci−1,i = 3.

• We connect every job with the source. The capacity of the edge is the duration of the job.

• We connect every job with every possible end point of a time interval (by creating new vertices k for
every job). For instance, if job 1 is available from t2 to t5, we connect it with t3, t4 and t5, because it
could run in any one of the intervals 2-3, 3-4, 4-5. Each edge’s capacity is the length of the interval

CSE 202 Homework 3 Matthias Springer, A99500782 11

(pi−1,i). This ensures that we do no use more processing power than one processor can provide in
this interval.

• For every time point ti, we connect the vertices of all jobs at this time point with an intermediate
vertex. This vertex is connected to the sink with a capacity value of ci−1,i. This ensures that we do
not schedule too many processes.

• The problem has a solution if and only if the max flow is
∑

i li, where li is the length of job i. By
examining the flow values of the edges with capacities of pa,b we can determine in which intervals a
job is supposed to run. To generate a concrete schedule, we have to do a post-processing step.

Graph Construction

• Create a source s and a sink t.

• Create a vertex ji for every job i and connect it to the source with a capacity of li (direction: towards
ji).

• For every job i, create a set of vertices ki,j, where i is available in an interval tj−1 to tj. I.e. the
smallest tj−1 represents the time point where i becomes available and the largest tj represents the
deadline for the job.

• Connect every ji with all ki,m with a capacity that is the duration of the interval m − 1 to m (in
other words: the processing power of one processor in that time interval).

• Create vertices wi for every time point i. These vertices sum up all the work that is done in one
interval.

• Create edges (ki,j, wj) for all jobs i, with capacity of ∞.

• Create edges (wi, t) with a capacity of ci−1,i.

Algorithm

• Calculate all time points ti by creating list of all times when a processor becomes available or vanishes
and when a job becomes available. Sort that list.

• For every time interval ti−1 to ti calculate the processor capacity by checking which processors are
available in every interval and multiplying this number with the length of the interval.

• Generate the flow graph G. If the max flow is smaller than
∑

i li, return no solution.

• Calculate the max flow of G with the Ford-Fulkerson algorithm.

• For every interval ti−1 to ti and every job m, generate a mapping of running times. The runtime of
job m in that interval is the flow value of the edge between the vertices jm and km,i.

• For every interval, generate a concrete schedule: use the algorithm described below.

cpu ← 1
time ← 0
for all (job, runtime) ∈ mapping do

if time + runtime ≤ intervalLength then

CSE 202 Homework 3 Matthias Springer, A99500782 12

schedule(job, cpu, time, time + runtime)
time ← time + runtime

else
schedule(job, cpu, cpu, intervalLength)
time ← runtime − (intervalLength − time)
cpu ← cpu + 1
schedule(job, cpu, 0, time)

end if
end for

The function schedule schedules a job on a specific processor for a given time span (start time and end
time). Note, that the algorithm might schedule a job on two different processors, but a single job is never
run in parallel on multiple processors, because the length of a job run (runtime) is never bigger than the
length of the interval7.

Proof

• The number of processors stays constant in every interval and no new jobs are added. Therefore, we
can assume that we have a single processor with a bigger amount of computing power, as long as no
job gets scheduled for more than the interval length (parallel computation is not allowed). We show
later, that we can then always generate a concrete valid scheduling.

• Every job is scheduled: if the max flow is
∑

i li, then every job i runs exactly for a time of li during
a number of intervals, because due to flow conservation the computing time must be delegated to
these intervals.

• Every interval ti−1 to ti cannot get more than ci−1,i computing load (capacity constraints on edges
that lead to t). In addition, no job in that interval is scheduled longer than the interval length.
Therefore, we can always generate a concrete schedule for every interval by scheduling the jobs after
each other and choosing a new processor once the current processor has no computing time left in
the current interval. The rest of the current job might be scheduled on the new processor, resulting
in two different run time spans for a single job. However, these two spans can never overlap, because
the total computing time for a single job does not exceed the interval length because of the capacity
constraints pi−1,i.

Runtime

Let r be the number of processors and e be the number of jobs.

• Calculating points ti: the list contains 2r+e time points. Therefore, sorting takes O((2r+e) log(2r+
e)) time.

• Calculating the processor capacity for every time interval: there are 2r+ e− 1 time intervals and for
every interval, we need to check r processors. Therefore, this takes O(r2 + er) time.

• Generate the graph G: we create vertices for every job, every time interval and a vertex for some
time intervals in every job. Therefore, we create O(er) vertices and no more than O(e2r2) edges
(assuming that we generate a node between every pair of vertices).

7See proof for more details.

CSE 202 Homework 3 Matthias Springer, A99500782 13

• Calculate the max flow with the Edmonds-Karp algorithm: since we have O(er) vertices and O(e2r2)
edges, the Edmonds-Karp algorithm runs in O(e5r5).

• Generating the concrete schedule from the mapping: in the worst case, every job is scheduled very
shortly in every interval, therefore we have to examine O((2r + e) · e) = O(re+ e2) job time spans.

• The overall runtime complexity of the algorithm is therefore O(e5r5) (e ≥ 1 and r ≥ 1)8. Therefore,
the algorithm is polynomial.

Problem 2

Relation to Baseball Elimination

• This problem is related to the Baseball elimination problem and we use a similar flow graph to solve
it.

• Every vertex in the graph corresponds to a baseball team and every edge corresponds to a game to
be played between two teams.

• No team has won a game so far and every team plays against another team only once.

• A subset of teams S (vertices) can eliminate another team t, if its number of remaining games against
each other divided by |S| is greater than the games to be played by t (we call that number rt), because
in that case at least one team in S must have more than rt wins.

• Apply this idea to the graph cohesiveness problem: a set of vertices S can eliminate another vertex
t, if e(S)

|S| > dt, where dt is the degree of vertex t.

8There is most likely a much better upper bound, but the problem description just asked for a polynomial algorithm.

CSE 202 Homework 3 Matthias Springer, A99500782 14

Subproblem a

Basic Idea

• We build a flow graph as shown in the figure above. There is a subset S with a cohesiveness bigger
than α iff the max flow value is smaller than |E|

• Let the vertices ab on the left side represent matches and the vertices a on the right side represent
teams. Let every team have zero wins and every match ab happen exactly once if the vertex is
present. If the max flow value is smaller than |E|, this means that not all wins of the |E| matches
can be distributed in such a way that no team that has (only) α matches left gets eliminated.

• If a team with α matches left gets eliminated, there must be a subset S with e(S)
|S| > α (same argument

as lemma 7.59 in the text book).

CSE 202 Homework 3 Matthias Springer, A99500782 15

• The fact whether such a subset S exists, changes only for discrete values of α. There is a subset S
with e(S)

|S| ≥ α iff the max flow is smaller than |E| for the next smaller value of α.

Graph Construction

• Add a source s and a sink t.

• For every vertex vi in the original graph, add a vertex vi.

• For every edge (vi, vj) in the original graph, add a vertex vij.

• For every vertex vij in the new graph, add an edge (s, vij) with capacity 1.

• For every vertex vij in the new graph, add two edges (vij, vi) and (vij, vj) with capacity ∞.

• For every vertex vi in the new graph, add an edge (vi, t) with capacity α.

Algorithm

Note, that the fact whether a subset S with α ≥ e(S)
|S| exists, changes only at discrete values of α. The

upper part of the fraction must be an integer value in [0; |E|] (we cannot have more than |E| edges). The
lower part of the fraction must be an integer value in [0; |V |] (we cannot have more than |V | vertices). We
can show that the difference between two different values α1, α2 must be at least 1

n2
9.

α1 − α2 =
a1
b1
− a2
b2

=
a1b2 − a2b1

b1b2

We know that the upper part of the fraction must be an integer i with |i| ≥ 1 and the lower part of
the fraction can never be greater than n2, because both b1 and b2 are bounded by n. Therefore, |α1 − α2|
must be at least 1

n2 .

• Calculate the next smaller value α′ = α− 1
n2

• Build the flow graph G′ based on the graph G as described above with α′.

• Calculate the maximum flow value with the Ford-Fulkerson algorithm.

• If the maximum flow value is smaller than |E|: output true, otherwise output false.

Proof

Let us assume that the max flow value for the graph is greater or equal to |E|. In that case, all matches,
represented by edges (s, vi,j), can distributed to teams (represented by vi) in such a way that no team has
more than α wins. Therefore, no subset of teams can eliminate a team that has α games left. Therefore,
no subset of teams of size |S| can have more than α|S| = e(S) matches (represented by that number of

edges) left. This means, that there cannot be a subset S with α < e(S)
|S| .

Let us assume that the max flow for the graph is lower than |E|. In that case, not all matches can
be distributed to teams in such a way that no team has more than α wins. Therefore, at least one team
must have more than α wins. According to lemma 7.59 (that we also proved in the lecture), we can find a

certificate (a subset S) such that e(S)
|S| > α. See subproblem b for a description how to find this set.

9n = |V |.

CSE 202 Homework 3 Matthias Springer, A99500782 16

Since the problem description is slightly modified in a way that the cohesiveness must be at least α
(instead of strictly larger), we can find the answer to that question by examining the next smaller value of
α. The proof for finding this next smaller value is described in the algorithm part.

Runtime

• Building the flow graph involves adding O(|V |+ |E|) vertices and O(|V |+ |E|) edges, since we add
edges from the source, to the sink and in middle part of the graph from every vij to both vi and vj.
We create exactly two edges per edge in G for the middle part of G′.

• Calculating the maximum flow with the Edmonds-Karp algorithm takes at O((|V | + |E|)3). This is
therefore also the overall runtime of the algorithm.

Subproblem b

Basic Idea

• We run the algorithm described in subproblem a for every value of α, starting with the smallest
possible value. We have already shown that α can take only discrete values.

• When the algorithm tells us that, for a value of α, there is no subset S with cohesiveness greater or
equal to α, we know that the previous value of α was the maximum value.

• We can extract the subset S from the minimal cut: all vertices vi that are on the same side as the
source (same technique as in baseball elimination).

• We can optimize this with binary search, resulting in fewer runs of the algorithm.

Algorithm

• Let α = 0.

• Repeat until algorithm in subproblem a says false: α = α + 1
n2 .

• Let α∗ be the previous value of α (where the algorithm still sayed true), G∗ be the graph for α∗, and
G∗r be the residual graph that was generated during the Ford-Fulkerson algorithm.

• Generate a min-cut for G∗ using G∗r. This can be done by doing a DFS starting at s. All reachable
vertices are in the set A and B = V − A.

• Output all vertices vi (that are on the right side in the figure illustrating G) in set A.

The algorithm can be optimized with binary search: instead of increasing α by 1, increase/decrease α

by half of the binary search interval. We know that α < |E|
1

, in case |S| = 1. We can never reach this
value, because there is no way to have edges with only one vertex. But we can be sure that the algorithm
of subproblem a will eventually say false in the loop.

CSE 202 Homework 3 Matthias Springer, A99500782 17

Proof

We already proved the algorithm of subproblem a. We still need to prove that we can extract S from the
minimum cut. The proof is the same as for the baseball problem. The main idea for the proof is taken
from the text book. For the proof, we take a look at the flow for the graph with the last value of α, for
which the algorithm of subproblem a said true, i.e. the last α for which no team was eliminated.

• If a vertex vij ∈ A, then vi ∈ A and vj ∈ A. Otherwise, the minimum cut value would be infinite,
because the capacities of the connecting edges are infinite.

• Therefore, if vi 6∈ A or vj 6∈ A, then vij ∈ B.

• If vi ∈ A and vj ∈ A, then vij ∈ A. Otherwise, we could decrease the minimum cut value by adding
vij to A (decreasing the cut value by 1 for the edge (s, vij)).

• We therefore know that the only cut edges are edges (vi, t) and (s, vij).

• We can conclude that the edges (vi, t) are relevant for this problem, because they define the bottleneck
that prevents the algorithm from pushing more flow to the sink using a team vertex. I.e., we could
increase the maximum flow by pushing more flow using these vertices but then we would eliminate
a team. The edges (s, vij) are not relevant here, because we cannot increase them without adding
additional edges in the graph G (multi-edges).

Runtime

• For the unoptimized version, we run the algorithm of subproblem a O(|E|1
n2

) = O(|E|n2) = O(|E||V |2)
times. This is the number of times we can increase α.

• The overall runtime complexity for the unoptimized version is therefore O(|E||V |2 · (|V |+ |E|)3).

• The overall runtime complexity for the optimized version with binary search is O(log(|E||V |2) ·(|V |+
|E|)3).

• There is most likely a much lower bound on the complexity, but the problem description just asked
for a polynomial algorithm.

CSE 202 Homework 3 Matthias Springer, A99500782 18

Problem 4

Basic Idea

• We begin with a preprocessing step: for every pair of sets Si and Sj, we determine whether Si ⊆ Sj

or Sj ⊆ Si. Afterwards, we can form chains of subsets, e.g. Si ⊆ Sj ⊆ Sk. In the figure above, we
have the chains (S1, S2), (S3, S2) and (S4). We represent these chains as a graph G = (V,E) as shown
in the upper part of the figure. There is an edge (Si, Sj) if Si ⊆ Sj.

• We generate a flow network for this graph. The flow network is a bipartite graph G′ = ((V ′1 ∪V ′2), E ′)
with V ′1 = {v ∈ V | din(v) > 0}, V ′2 = {v ∈ V | dout(v) > 0}, where din(v) is the incoming edge degree
of v and dout is the outgoing edge degree of v. We connect the left part with the soruce, and the right
part with the sink. There is an edge (a, b) in the middle iff a ⊆ b.

• k −maxFlow is the minimum number of permutations that we need.

• We can reconstruct the permutations, i.e. the subsets that correspond to one permutation by ex-
amining the flow values. Then, for every chain (Si, Sj, . . . Sk), we can build the permutation in the

CSE 202 Homework 3 Matthias Springer, A99500782 19

following order: all columns in Si, all additional columns in Sj, . . ., all additional columns in Sk, all
other columns in the table.

Flow Graph Construction

• Add a source s and a sink t.

• For every vi ∈ V , add a vertex vin,i if din(vi) > 0.

• For every vi ∈ V , add a vertex vout ,i if dout(vi) > 0.

• For every vin,a ∈ V ′ and vout ,b ∈ V ′, add an edge (vin,a, vout ,b) with capacity ∞, if a ⊆ b.

• Add edges (s, vin,a) with capacity 1.

• Add edges (vout ,b, t) with capacity 1.

Algorithm

• For every pair Si, Sj determine whether Si ⊆ Sj or Sj ⊆ Si. This can be done by iterating over all
elements in one set and checking if the element is present in the other set.

• Build the graph G: when adding the next vertex Si, add an edge (Sk, Si) if Sk ⊆ Si and add an edge
(Si, Sj) if Si ⊆ Sj.

• Build the flow graph G′ as described in the previous subsection.

• If k −maxFlow > l, output no solution.

• Otherwise, generate up to l lists Li, where Sa and Sb are in the same list if f((vin,a, vb,out)) = 1.
Afterwards, every Li contains a chain, and the union of all chains is V i10. If a set Sc is not added to
any list (this can happen, if there is no subset relation involving Sc), add it to a new list.

• Sort all chains by the ⊆ relation, i.e. Sa ∈ Li ≤ Sb ∈ Li if Sa ⊆ Sb.

• Output a permutation for every Li. The columns should be output in this sequence. Start with the
first set in Li and output all its columns. For the next set in Li, output all columns that were not
yet output for this Li so far. Continue, until all sets are output. Output all columns of the table
that were not output so far. Continue with the next Li.

Proof

• We first show that the algorithm always generates a valid set of permutations, i.e. all permutations
Tpi together contain all sets Si as prefixes.

• Every set Si is contained in some list Li, because there is either a subset relation Sj ⊆ Si or a subset
relation Sj ⊆ Si (then we add both to the same list), or Si is not part of a subset relation and we
create a new list and Si is added to that list.

10A set Sa can appear in more than just one Li.

CSE 202 Homework 3 Matthias Springer, A99500782 20

• After sorting the lists Li, we can be sure that for Li = (s1, s2, . . . , sq) si−1 ⊆ si. Therefore, if we
generate the permutations in such a way that we first add the columns in s1, then the columns in
s2, and so on, we can be sure that every si is a prefix of the permutation. We can prove this by
contradiction. Let us assume that si ⊆ sj and sj is a prefix of the permutation but si is not. In that
case, there must be some column out of sj in the permutation that is not in si before finishing the
enumeration of all si. But this cannot happens, because we first add all columns of si and only then
start adding additional columns from sj.

• We can be sure that we actually generate a permutation for every Li, because we add only new
columns and fill up the permutation with missing columns from the table at the end.

• Through the minimum cut we can prove that the algorithm generates the minimum number of
permutations. Therefore, we have to find the bottleneck in the network flow graph. We can be sure
that, if vin,a ∈ A, then vout ,b ∈ A if Sa ⊆ Sb, because these vertices are connected with an infinite
edge. On the other hand, if vout ,b1 ∈ A and vout ,b2 ∈ A, then vin,a ∈ A if Sa ⊆ Sb1 and Sa ⊆ Sb2

because, otherwise, we could reduce the max flow by 1 by adding vin,a to A. We can show that the
min cut value is the number of sets, for which we can reuse or extend an existing chain. Therefore,
k −maxFlow is the number of times we have to use a new chain. This obviously has to be true for
at least one set, because we need at least one permutation.

Runtime

• Determining subset relation for every pair of sets: we have to check if each element is present in the
other set. This can be done in O(n · k2).

• Building the graph G: we add k vertices and up to k2 edges, therefore the runtime is O(k2).

• Building the flow network G′: we add 2k vertices and up to (2k)2 edges, therefore the runtime is
O(k2).

• The max flow can be determined with the Edmonds-Karp algorithm in O(|V ||E|2) = O(k5).

• Creating the lists Li: we add up to O(2k2) vertices to the lists Li.

• Sorting all Li: there are no more than l lists, so the runtime is O(l · (k2 log k2)) = O(k · (k2 log k2))
because l < k.

• Output all permutations: there are O(k2) sets in total in all Li, and every set can contain up to n
elements. Therefore, the runtime is O(nk2). To check whether we already output a column, we can
use a hash set with constant insertion/accessing runtime (for n elements: no more than O(n)).

• The overall runtime of the algorithm is O(max{n · k2, k5}).

