
Efficient Layered Method Execution in ContextAmber
COP 2015

Matthias Springer, Jens Lincke, Robert Hirschfeld

Hasso Plattner Institute, Software Architecture Group

July 5, 2015

Efficient Layered Method Execution I Introduction

Introduction

• Implemented ContextAmber: layer-based COP library,
written in Smalltalk, compiled to JavaScript

• Optimizations for ContextAmber:
make layered method execution faster

• Running example: Vector Graphics Debugging

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 2 / 19

Efficient Layered Method Execution I Introduction

Which COP is it?

• Layer-based COP for class-based object-oriented programming

• Layer activation globally (+scoped) and per object

• Explicit layer activation only
(i.e. no declarative layer activation or activeLayer method override)

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 3 / 19

Efficient Layered Method Execution I Concept

Problem: Why is ContextAmber slow?

What happens when a layered method is invoked:

1. Compute which layers are active for the receiver

global:

(+L5, -L2, -L3)
 = (L1, L4, L5)

(L1, L2, L3, L4)

O1:

(-L1 + L1)
 = (L2, L3, L4, L1)

O2:

2. Repeatedly do:

2.1 Find next partial method

L2 L3 L4 L1
2.2 Dispatch to partial method

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 4 / 19

Efficient Layered Method Execution I Concept

Solution

• Cache active layers on a per-object basis

• Aggressive inlining: remove all partial method dispatches

• Inlined method caching

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 5 / 19

Efficient Layered Method Execution I Concept

What’s Next?

Biggest overhead: looking up and
dispatching to next partial method

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 6 / 19

Efficient Layered Method Execution I Concept

Partial Method Inlining

compute layer
comp. + signature

signature
differs?

no

no

(execute method)

install
method

generate method

(layered method
 invocation)

partial method inlining

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 7 / 19

Efficient Layered Method Execution I Concept

What’s Next?

Biggest overhead: inlining methods
every time the layer composition changes

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 8 / 19

Efficient Layered Method Execution I Concept

Method Caches

compute layer
comp. + signature

signature
differs?

(composition
already computed)

no

no

yes

(execute method)

method in
cache?

install
method

generate method
+ put in cache

no

yes

(layered method
 invocation)

partial method inlining

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 9 / 19

Efficient Layered Method Execution I Concept

What’s Next?

Biggest overhead: calculating the
current layer composition on every

layered method execution

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 10 / 19

Efficient Layered Method Execution I Concept

Layer Composition Changes

When does the the layer composition change?

• Layer activated for an object
→ single object affected → dirty bit

• Layer activated globally
→ multiple objects affected → version number

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 11 / 19

Efficient Layered Method Execution I Concept

Layer Composition Caching

receiver dirty?

receiver version
out of date?

 signature
differs?

compute layer
comp. + signature

no

no

yes

yes

composition signature caching

(execute method)

no

method in
cache?

install
method

generate method
+ put in cache

no

yes

(layered method
 invocation)

partial method inlining

compute layer
composition

yes

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 12 / 19

Efficient Layered Method Execution I Concept

What’s Next?

Biggest overhead: (probably) JIT trace
invalidation every time a new layered

method is installed

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 13 / 19

Efficient Layered Method Execution I Concept

Instance-specific Method Inlining

Every object has its own inlined method.

• Layer composition change: nothing changed
(different layer composition → different inlined method)

• Invoke a.method and b.method,
and a and b have different layer compositions:
no JIT trace invalidation anymore

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 14 / 19

Efficient Layered Method Execution I Concept

What’s Next?

Performance is very close
to performance without COP

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 15 / 19

Efficient Layered Method Execution I Benchmarks

Benchmarks
Average, without first frame

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 16 / 19

Efficient Layered Method Execution I Benchmarks

Benchmarks
First frame only

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 17 / 19

Efficient Layered Method Execution I Next Steps

Future Work

• Methods are taken from a cache mapping composition signatures to
inlined methods

• One method only is ever installed
• Next step: make method lookup aware of layer compositions

− receiver type × composition signature → target method
− Preseve JIT traces even if layer composition changes

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 18 / 19

Efficient Layered Method Execution I Summary

Summary

receiver dirty?

receiver version
out of date?

 signature
differs?

compute layer
comp. + signature

no

no

yes

yes

composition signature caching

(execute method)

no

method in
cache?

install
method

generate method
+ put in cache

no

yes

(layered method
 invocation)

partial method inlining

compute layer
composition

yes

Method Inlining

Method Caching

Layer Composition
Caching

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 19 / 19

	Introduction
	Concept
	Benchmarks
	Next Steps
	Summary

