Efficient Layered Method Execution in ContextAmber
COP 2015

Matthias Springer, Jens Lincke, Robert Hirschfeld
Hasso Plattner Institute, Software Architecture Group

July 5, 2015

Efficient Layered Method Execution B Introduction

Introduction

e Implemented ContextAmber: layer-based COP library,
written in Smalltalk, compiled to JavaScript

e Optimizations for ContextAmber:
make layered method execution faster

e Running example: Vector Graphics Debugging

Amber

Smalltalk brought to the web

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 2/19

Efficient Layered Method Execution B Introduction

Which COP is it?

e Layer-based COP for class-based object-oriented programming
e Layer activation globally (+scoped) and per object

e Explicit layer activation only
(i.e. no declarative layer activation or activeLayer method override)

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 3/19

Efficient Layered Method Execution p Concept

Problem: Why is ContextAmber slow?

What happens when a layered method is invoked:

1. Compute which layers are active for the receiver

global: (L1, L2, L3, L4)
o1: (+L5, -L2, -L3)

= (L1, L4, L5)
02: (-L1+L1)

= (L2, L3, L4, L1)

2. Repeatedly do:
2.1 Find next partial method
—> —> [4 —> L1

2.2 Dispatch to partial method

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 4/19

Efficient Layered Method Execution B Concept

Solution

e Cache active layers on a per-object basis
e Aggressive inlining: remove all partial method dispatches
¢ Inlined method caching

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 5/19

Efficient Layered Method Execution B Concept

What's Next?

SLOW\
Biggest overhead: looking up and

¥ dispatching to next partial method

W ’

S

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 6 /19

Efficient Layered Method Execution p Concept

Partial Method Inlining

(layered method

invocation)

compute layer
comp. + signature

lno

signature

partial method inlining

install
method

differs?

no

(execute method)

Hasso Plattner Institute, Software Architecture Group

Efficient Layered Method Execution

generate method

July 5, 2015

7/19

Efficient Layered Method Execution B Concept

What's Next?

SLOW\
Biggest overhead: inlining methods

W s every time the layer composition changes
[-

S

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 8/19

Efficient Layered Method Execution p Concept

Method Caches

(layered method
invocation)
partial method inlining
install
compute layer method
comp. + signature
l no yes
signature yes (composition method in | no generate method
n —_— — E—— .
differs? already computed) cache? + put in cache
no
(execute method)
Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 9 /19

Efficient Layered Method Execution B Concept

What's Next?

Seow

AN

W ==
A y
o8y

Biggest overhead: calculating the
current layer composition on every
layered method execution

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 10 / 19

Efficient Layered Method Execution p Concept

Layer Composition Changes

When does the the layer composition change?

e Layer activated for an object
— single object affected — dirty bit

e Layer activated globally
— multiple objects affected — version number

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 11 /19

Efficient Layered Method Execution p Concept

Layer Composition Caching

(layered method
invocation)

Y

receiver dirty? | =
lno

partial method inlining

composition signature caching

receiver version| yes compute layer install
_yes ¢
out of date? comp. + signature method
no |
77 yes
signature yes compute layer methodin | no | generate method
differs? composition cache? + put in cache

[m

(execute method)

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 12 /19

Efficient Layered Method Execution B Concept

What's Next?

Seow

AN

W ==
A y
o8y

Biggest overhead: (probably) JIT trace
invalidation every time a new layered
method is installed

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 13 /19

Efficient Layered Method Execution B Concept

Instance-specific Method Inlining

Every object has its own inlined method.

e Layer composition change: nothing changed
(different layer composition — different inlined method)

e Invoke a.method and b.method,
and a and b have different layer compositions:
no JIT trace invalidation anymore

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 14 /19

Efficient Layered Method Execution p Concept

What's Next?

Performance is very close
to performance without COP

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 15 /19

Efficient Layered Method Execution B Benchmarks

Benchmarks

Average, without first frame

2200 T
2000} |3 without ContextAmber oo |
. ps 0 0(d
1800l | =2 class-specific (cached) b oo i
1600l | =3 class-specific (uncached) RO |
1 ifi 0o0(d
1400 =3 !nstance-spec!f!c (cached) 1% |
instance-specific (uncached) oog
1200} boo 4
Q |ood
— 3 N _
© o b
s 30} m "B ™ g 2 ooooc T
) L — 4 looo| - ~ boo| O i
£ 25 N Yoo d N oo ood $ 0
o 201 looo 00(poo| ~ m
£ 15 004 _poo 004 i
b= nm Qa4 o oo 00(boo o
S 10L ~ < < ~ oo DOO 00d (oo
[~ o) 0 [T} 0 lo oo 00(q © poo ©0Q
5 co oo DOO = ood [eYoX
0 o 0 oo oo o Q0 poo ©od
no layers control point layer control point layer (mixed)

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 16 / 19

Efficient Layered Method Execution B Benchmarks

Benchmarks

First frame only

2600 T
2400 1 without ContextAmber 9 i
2200L| =2 class-specific (cached) ~ ~ ,
o0 OO
2000l | =0 class-specific (uncached) S ° 00 ©
. _) o o [oe]
18001 B !nstance spec!f!c (cached) 00 oo 3 |
instance-specific (uncached) 00Q oo

1600} [e]e} 0 0 9 0O0¢(
- 00(Q © poo OO

s = R==1 ~ < - - - © ~~d

~N m

- \PAYAY AAY v v N e
») POO 0 o 9 00
— 200} 00(g 00(Q oo oYoYe!
[POO © — m pOO 0 0 9 [e]e}
£ 150t 00d ~ m [00g oo oJoJe
o a DOO = [oo 00 000 00
£ - o5 |00d oo 00Q oo P OO
2 100- Q ooy ® POO 00g DOO ooo 00(
S 0 0o 00(poo 00Q oo oJeJe)
© sof oo DOO 0 00 g OO 000 00(
~ © oo 00d(% poo 00(g < oo oJe]e
0 00 00 0,04 00 < op 9 00
no layers control point layer control point layer (mixed)

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 17 / 19

Efficient Layered Method Execution B Next Steps W

Future Work

e Methods are taken from a cache mapping composition signatures to
inlined methods

e One method only is ever installed

e Next step: make method lookup aware of layer compositions

— receiver type X composition signature — target method
— Preseve JIT traces even if layer composition changes

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 18 / 19

Efficient Layered Method Execution B Summary

Summary

(layered method

invocation)

receiver dirty? ws—\
l no
receiver version
out of date?

no

compute layer
comp. + signature

yes
LR

yes

Method Inlining

Method Caching

Layer Composition

compute layer
composition

| signature yes

differs?

method in

cache?

generate method
+ put in cache

no

Caching

lno

(execute method)

Hasso Plattner Institute, Software Architecture Group

Efficient Layered Method Execution July 5, 2015 19 /19

	Introduction
	Concept
	Benchmarks
	Next Steps
	Summary

