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Efficient Layered Method Execution B Introduction

Introduction

e Implemented ContextAmber: layer-based COP library,
written in Smalltalk, compiled to JavaScript

e Optimizations for ContextAmber:
make layered method execution faster

e Running example: Vector Graphics Debugging

Amber

Smalltalk brought to the web
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Efficient Layered Method Execution B Introduction

Which COP is it?

e Layer-based COP for class-based object-oriented programming
e Layer activation globally (+scoped) and per object

e Explicit layer activation only
(i.e. no declarative layer activation or activeLayer method override)
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Efficient Layered Method Execution p Concept

Problem: Why is ContextAmber slow?

What happens when a layered method is invoked:

1. Compute which layers are active for the receiver

global: (L1, L2, L3, L4)
o1: (+L5, -L2, -L3)

= (L1, L4, L5)
02: (-L1+L1)

= (L2, L3, L4, L1)

2. Repeatedly do:
2.1 Find next partial method
—> —> [4 —> L1

2.2 Dispatch to partial method
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Efficient Layered Method Execution B Concept

Solution

e Cache active layers on a per-object basis
e Aggressive inlining: remove all partial method dispatches
¢ Inlined method caching
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Efficient Layered Method Execution B Concept

What's Next?

SLOW\
Biggest overhead: looking up and

¥ dispatching to next partial method

W ’

S
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Efficient Layered Method Execution p Concept

Partial Method Inlining

(layered method

invocation)

compute layer
comp. + signature

lno

signature

partial method inlining

install
method

differs?

no

(execute method)
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Efficient Layered Method Execution B Concept

What's Next?

SLOW\
Biggest overhead: inlining methods

W s every time the layer composition changes
[ -

S
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Efficient Layered Method Execution p Concept

Method Caches

(layered method
invocation)
partial method inlining
install
compute layer method
comp. + signature
l no yes
signature yes (composition method in | no generate method
n —_— — E—— .
differs? already computed) cache? + put in cache
no
(execute method)
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Efficient Layered Method Execution B Concept

What's Next?

Seow

AN

W ==
A y
o8y

Biggest overhead: calculating the
current layer composition on every
layered method execution
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Efficient Layered Method Execution p Concept

Layer Composition Changes

When does the the layer composition change?

e Layer activated for an object
— single object affected — dirty bit

e Layer activated globally
— multiple objects affected — version number
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Efficient Layered Method Execution p Concept

Layer Composition Caching

(layered method
invocation)

Y

receiver dirty? | =
lno

partial method inlining

composition signature caching

receiver version| yes compute layer install
_yes ¢
out of date? comp. + signature method
no |
77777777777777777777777777777777777777777777 yes
signature yes compute layer methodin | no | generate method
differs? composition cache? + put in cache

[m

(execute method)
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Efficient Layered Method Execution B Concept

What's Next?

Seow

AN

W ==
A y
o8y

Biggest overhead: (probably) JIT trace
invalidation every time a new layered
method is installed
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Efficient Layered Method Execution B Concept

Instance-specific Method Inlining

Every object has its own inlined method.

e Layer composition change: nothing changed
(different layer composition — different inlined method)

e Invoke a.method and b.method,
and a and b have different layer compositions:
no JIT trace invalidation anymore
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Efficient Layered Method Execution p Concept

What's Next?

Performance is very close
to performance without COP
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Efficient Layered Method Execution B Benchmarks

Benchmarks
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Benchmarks

First frame only
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Efficient Layered Method Execution B Next Steps W

Future Work

e Methods are taken from a cache mapping composition signatures to
inlined methods

e One method only is ever installed

e Next step: make method lookup aware of layer compositions

— receiver type X composition signature — target method
— Preseve JIT traces even if layer composition changes
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Efficient Layered Method Execution B Summary

Summary

(layered method

invocation)

receiver dirty? ws—\
l no
receiver version
out of date?

no

compute layer
comp. + signature

yes
LR

yes

Method Inlining

Method Caching

Layer Composition

compute layer
composition

| signature yes

differs?

method in

cache?

generate method
+ put in cache

no

Caching

lno

(execute method)
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