
Efficient Layered Method Execution in ContextAmber
COP 2015

Matthias Springer, Jens Lincke, Robert Hirschfeld

Hasso Plattner Institute, Software Architecture Group

July 5, 2015



Efficient Layered Method Execution I Introduction

Introduction

• Implemented ContextAmber: layer-based COP library,
written in Smalltalk, compiled to JavaScript

• Optimizations for ContextAmber:
make layered method execution faster

• Running example: Vector Graphics Debugging
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Efficient Layered Method Execution I Introduction

Which COP is it?

• Layer-based COP for class-based object-oriented programming

• Layer activation globally (+scoped) and per object

• Explicit layer activation only
(i.e. no declarative layer activation or activeLayer method override)
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Efficient Layered Method Execution I Concept

Problem: Why is ContextAmber slow?

What happens when a layered method is invoked:

1. Compute which layers are active for the receiver

global: 

(+L5, -L2, -L3) 
    = (L1, L4, L5)

(L1, L2, L3, L4)

O1: 

(-L1 + L1) 
    = (L2, L3, L4, L1)

O2: 

2. Repeatedly do:

2.1 Find next partial method

L2 L3 L4 L1
2.2 Dispatch to partial method
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Efficient Layered Method Execution I Concept

Solution

• Cache active layers on a per-object basis

• Aggressive inlining: remove all partial method dispatches

• Inlined method caching
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Efficient Layered Method Execution I Concept

What’s Next?

Biggest overhead: looking up and
dispatching to next partial method
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Efficient Layered Method Execution I Concept

Partial Method Inlining

compute layer 
comp. + signature

signature
differs?

no

no

(execute method)

install 
method

generate method

(layered method
 invocation)

partial method inlining
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Efficient Layered Method Execution I Concept

What’s Next?

Biggest overhead: inlining methods
every time the layer composition changes
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Efficient Layered Method Execution I Concept

Method Caches

compute layer 
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Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 9 / 19



Efficient Layered Method Execution I Concept

What’s Next?

Biggest overhead: calculating the
current layer composition on every

layered method execution
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Efficient Layered Method Execution I Concept

Layer Composition Changes

When does the the layer composition change?

• Layer activated for an object
→ single object affected → dirty bit

• Layer activated globally
→ multiple objects affected → version number
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Efficient Layered Method Execution I Concept

Layer Composition Caching
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Efficient Layered Method Execution I Concept

What’s Next?

Biggest overhead: (probably) JIT trace
invalidation every time a new layered

method is installed
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Efficient Layered Method Execution I Concept

Instance-specific Method Inlining

Every object has its own inlined method.

• Layer composition change: nothing changed
(different layer composition → different inlined method)

• Invoke a.method and b.method,
and a and b have different layer compositions:
no JIT trace invalidation anymore

Hasso Plattner Institute, Software Architecture Group Efficient Layered Method Execution July 5, 2015 14 / 19



Efficient Layered Method Execution I Concept

What’s Next?

Performance is very close
to performance without COP
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Efficient Layered Method Execution I Benchmarks

Benchmarks
Average, without first frame
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Efficient Layered Method Execution I Benchmarks

Benchmarks
First frame only
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Efficient Layered Method Execution I Next Steps

Future Work

• Methods are taken from a cache mapping composition signatures to
inlined methods

• One method only is ever installed
• Next step: make method lookup aware of layer compositions

− receiver type × composition signature → target method
− Preseve JIT traces even if layer composition changes
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Efficient Layered Method Execution I Summary

Summary
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