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Abstract

Object orientation is a popular language paradigm in general-
purpose computing, but not widely used in high-performance
SIMD computing due to insufficient compiler support. Object-
oriented code is often several factors slower than tuned,
non-OOP code. We propose Ikra-Cpp, a CUDA/C++ DSL
for object-oriented high-performance computing that lets
programmers write object-oriented code with standard C++
notation, while storing data in the well-studied Structure
of Arrays (SOA) layout. This gives programmers the per-
formance benefit of SOA and the expressiveness of object-
oriented programming at the same time.

Keywords C++, CUDA, Object-oriented Programming,
SIMD, Structure of Arrays

Extended Abstract

Previous work has demonstrated that Structure of Arrays
(SOA) is an effective technique for achieving high perfor-
mance on SIMD architectures such as GPUs or CPUs with
vector instructions [2, 4, 5, 7, 9, 10, 12]. Given an array of
C struct or class instances, SOA groups all values of a field
together (Figure 1). This is contrary to traditional Array of
Structures (AOS), where the fields of every object are grouped
together, and allows for more efficient memory access (par-
allel vector register loads, memory coalescing on GPUs) and
cache usage.

The goal of our research is to provide a mechanism that
lets programmers write object-oriented code in a readable
and concise AOS style (Figure 2a), while automatically lay-
outing data as SOA in the background. Existing C++ libraries
and language extensions like SoAx [3, 11] and the Intel SPMD
Program Compiler (ispc) [1, 8] provide that functionality for
C structs without methods. Our research extends that work
to object-oriented programming. The contributions of our
research prototype Ikra-Cpp! are support for classes, meth-
ods and constructors with minimal changes to standard C++
notation (Figure 2b) in both C++ and CUDA. Our approach is
closer to SoAx than to ispc: We are developing a lightweight
C++ library/DSL instead of a new C++ compiler or invasive

*Academic Advisor
Lhttps://github.com/prg-titech/ikra-cpp/

Hidehiko Masuhara*

Tokyo Instiute of Technology
masuhara@acm.org

storage

T T T T T 1]
/N /

OBjmaxinst-1-fieldy  objo.field;  Objmaxinst-1-fieldnumrietds-1

objo.field,  obj,.field,
Figure 1: Storage buffer (SOA). All values of a field are stored consecutively.

compiler extension, due to the high engineering effort of
compiler construction [6].

High-level Idea Ikra-Cpp stores all data of a SOA class in
a large statically allocated storage buffer (Figure 1). Upon
field access, Ikra-Cpp calculates and accesses an address in-
side the storage buffer. Our main insight is that this can
be achieved efficiently and seamlessly (with AOS-style no-
tation) in C++ with template metaprogramming, operator
overloading and preprocessor macros. Given an object ID id,
the address &obyj;; . field; can be computed as follows, where

offset(field,,) = Z:ol sizeof (field,.).

addr(id, i) = storage
+ maxInstances - offset(field;)
+ id - sizeof (field;)

All terms except for id are compile-time constants. After
constant folding, this computation is compiled to an effi-
cient mov instruction with strided memory access when used
in field reads/writes. The binary code is identical to hand-
written SOA code?.

Implementation Outline SOA objects are always refer-
enced with pointers and cannot be stack allocated. Pointers
to SOA objects do not point to actual data but are used to
encode object IDs (“fake pointers”). For example, the ad-
dress 0x1 is used to reference the first object. Fields must
be declared with special types (e.g., double_). Their implicit
conversion and assignment operators compute the object ID
from their this pointer and use the formula above to access
the storage buffer at the correct location.

2Confirmed with gcc 5.4.0 and clang 3.8.0.
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class Body {

public:
double pos_x = 0.0;
double pos_y = 0.0;
double vel_x = 1.9;
double vel_y = 1.9;

Body(double x, double y)
¢ pos_x(x), pos_y(y) {}

void move(double dt) {
pos_x = pos_x + vel_x x dt;
pos_y = pos_y + vel_y x dt;
}
3

void create_and_move() {
Body* b = new Body(1.0, 2.0);
b->move(0.5);
assert(b->pos_x == 1.5);

}

class Body : public Soalayout<Body, 50>
public: IKRA_INITIALIZE_CLASS

double_ pos_x = 0.0;

double_ pos_y = 0.0;

double_ vel_x = 1.0;

double_ vel_y = 1.0;

Body(double x, double y)
1 pos_x(x), pos_y(y) {3
void move(double dt) {
pos_x = pos_x + vel_x x dt;
pos_y = pos_y + vel_y * dt;
3
}; IKRA_HOST_STORAGE (Body);

void create_and_move() {
Body* b = new Body(1.0, 2.0);
b->move(0.5);
assert(b->pos_x == 1.5);

}

{ double Body_pos_x[50]; double Body_pos_y[50];
double Body_vel_x[50]; double Body_vel_y[50];
int Body_inst = 0;

int new_Body(double x, double y) {
int id = Body_inst++;
Body_pos_x[id] = x; Body_pos_y[id] = y;
Body_vel_x[id] = Body_vel_y[id] = 1.0;
return id;

}

void Body_move(int id, double dt) {
Body_pos_x[id] += Body_vel_x[id] * dt;
Body_pos_y[id] += Body_vel_y[id] *x dt;

3

void create_and_move() {
int b = new_Body(1.0, 2.0);
Body_move(b, 0.5);
assert(Body_pos_x[b] == 1.5);

}

(a) C++ Class (AOS Layout)

(b) Ikra-Cpp: AOS Syntax, but SOA Layout

(c) Hand-written SOA Layout in C++

Figure 2: Comparison of OOP Notation for a simplified 2D N-Body Simulation. Programmers want the notation of (a) but the performance of (c). With
Ikra-Cpp, they get the performace of (c) with the notation of (b). Ikra-Cpp also provides constructs for parallel method invocation (not discussed here).

Developing Ikra-Cpp is challenging from a technical point
of view: Due to the complex combination of operator over-
loading and address computation, it is harder for C++ com-
pilers to apply optimizations. While Ikra-Cpp is now on par
with hand-written SOA code in gcc (Figure 3), clang still has
trouble performing automatic loop vectorization.
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Figure 3: Running time for updating the position of every body
(Body: :move). The x and y axes measure the number of bodies and av-
erage running time values for one iteration. Every program ran iteratively
for at least 5s on a machine with an Intel i7-5960X CPU, Ubuntu 16.04.1 and
gce 5.4.0 (-03). Reported values are minimums of 12 program runs. To allow
for easier comparison with SoAx [3], we also show AOS-32, where Body
has 8 additional double fields. The lower diagram clearly shows the effect
of the L1 cache (32KB), the L2 cache (256KB) and the L3 cache (20MB).
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